B. Szabó, et al.
MolecularCatalysis491(2020)110984
co-financed by the European Regional Development Fund in the fra-
mework of the project No. VEKOP-2.3.2-16-2017-00013.
Butadiene production from bioethanol and acetaldehyde over tantalum oxide-sup-
ported ordered mesoporous silica catalysts, Appl. Catal. B Environ. 150–151 (2014)
[22] S. Li, Y. Men, J. Wang, S. Liu, X. Wang, F. Ji, S. Chai, Q. Song, Morphological
control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol
[23] M.D. Jones, C.G. Keir, C. Di Iulio, R.A.M. Robertson, C.V. Williams, D.C. Apperley,
Investigations into the conversion of ethanol into 1,3-butadiene, Catal. Sci. Technol.
[24] A. Klein, R. Palkovits, Influence of structural parameters on the conversion of
ethanol into 1,3-butadiene using mesoporous zeolites, Catal. Commun. 91 (2017)
[25] S.I. Fujita, S. Segawa, K. Kawashima, X. Nie, T. Erata, M. Arai, One-pot room-
temperature synthesis of Mg containing MCM-41 mesoporous silica for aldol reac-
[26] G. Pomalaza, G. Vofo, M. Capron, F. Dumeignil, ZnTa-TUD-1 as an easily prepared,
highly efficient catalyst for the selective conversion of ethanol to 1,3-butadiene,
[27] J. Scholz, A. Walter, A.H.P. Hahn, T. Ressler, Molybdenum oxide supported on
nanostructured MgO: influence of the alkaline support properties on MoOx struc-
ture and catalytic behavior in selective oxidation, Microporous Mesoporous Mater.
[28] I.M. El-Nahhal, J.K. Salem, N.S. Tabasi, Uptake of curcumin by supported metal
oxides (CaO and MgO) mesoporous silica materials, J. Sol-Gel Sci. Technol. (2018)
[29] A. Zukal, J. Pastva, J. Čejka, MgO-modified mesoporous silicas impregnated by
potassium carbonate for carbon dioxide adsorption, Microporous Mesoporous
[30] Y. Chen, J. Han, H. Zhang, Facile synthesis and characterization of acid-base bi-
functionalized mesoporous silica, Appl. Surf. Sci. 254 (2008) 5967–5974, https://
[31] Z.Y. Wu, Q. Jiang, Y.M. Wang, H.J. Wang, L.B. Sun, L.Y. Shi, J.H. Xu, Y. Wang,
Y. Chun, J.H. Zhu, Generating superbasic sites on mesoporous silica SBA-15, Chem.
[32] Y.L. Wei, Y.M. Wang, J.H. Zhu, Z.Y. Wu, In-situ coating of SBA-15 with MgO: direct
synthesis of mesoporous solid bases from strong acidic systems, Adv. Mater. 15
[34] Y.M. Wang, Z.Y. Wu, Y.L. Wei, J.H. Zhu, In situ coating metal oxide on SBA-15 in
one-pot synthesis, Microporous Mesoporous Mater. 84 (2005) 127–136, https://doi.
[35] K.K. Han, Y. Zhou, Y. Chun, J.H. Zhu, Efficient MgO-based mesoporous CO2 trapper
and its performance at high temperature, J. Hazard. Mater. 203–204 (2012)
[36] H. Zhang, M. Li, P. Xiao, D. Liu, C.J. Zou, Structure and catalytic performance of
Mg-SBA-15-supported nickel catalysts for CO2 reforming of methane to syngas,
[37] R. Barthos, A. Hegyessy, S. Kl?bert, J. Valyon, Vanadium dispersion and catalytic
activity of Pd/VO < inf > x < /inf > /SBA-15 catalysts in the Wacker oxidation of
[38] L. Wang, A. Lu, C. Wang, X. Zheng, D. Zhao, R. Liu, Nano-fibriform production of
silica from natural chrysotile, J. Colloid Interface Sci. 295 (2006) 436–439, https://
[41] Y. Sekiguchi, S. Akiyama, W. Urakawa, T.R. Koyama, A. Miyaji, K. Motokura,
T. Baba, One-step catalytic conversion of ethanol into 1,3-butadiene using zinc-
[42] H. Hattori, Solid base catalysts: fundamentals and their applications in organic
References
[1] H.N. Sun, J.P. Wristers, Kirk-Othmer Encyclopedia of Chemical Technology, John
[2] P.C.A. Bruijnincx, B.M. Weckhuysen, Shale gas revolution: an opportunity for the
production of biobased chemicals? Angew. Chemie Int. Ed. 52 (2013)
[3] J. Sun, Y. Wang, Recent advances in catalytic conversion of ethanol to chemicals,
[6] M. Lewandowski, G.S. Babu, M. Vezzoli, M.D. Jones, R.E. Owen, D. Mattia,
P. Plucinski, E. Mikolajska, A. Ochenduszko, D.C. Apperley, Investigations into the
conversion of ethanol to 1,3-butadiene using MgO:SiO2 supported catalysts, Catal.
[7] C. Angelici, F. Meirer, A.M.J. Van Der Eerden, H.L. Schaink, A. Goryachev,
J.P. Hofmann, E.J.M. Hensen, B.M. Weckhuysen, P.C.A. Bruijnincx, Ex situ and
operando studies on the role of copper in Cu-promoted SiO2-MgO catalysts for the
Lebedev ethanol-to-Butadiene process, ACS Catal. 5 (2015) 6005–6015, https://doi.
[8] J.V. Ochoa, C. Bandinelli, O. Vozniuk, A. Chieregato, A. Malmusi, C. Recchi,
F. Cavani, An analysis of the chemical, physical and reactivity features of MgO-SiO2
catalysts for butadiene synthesis with the Lebedev process, Green Chem. 18 (2016)
[9] Y. Hayashi, S. Akiyama, A. Miyaji, Y. Sekiguchi, Y. Sakamoto, A. Shiga,
T.R. Koyama, K. Motokura, T. Baba, Experimental and computational studies of the
roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the
conversion of ethanol, Phys. Chem. Chem. Phys. 18 (2016) 25191–25209, https://
[10] X. Huang, Y. Men, J. Wang, W. An, Y. Wang, Highly active and selective binary
MgO-SiO2 catalysts for the production of 1,3-butadiene from ethanol, Catal. Sci.
[11] J.V. Ochoa, A. Malmusi, C. Recchi, F. Cavani, Understanding the role of gallium as a
promoter of magnesium silicate catalysts for the conversion of ethanol into buta-
[12] Y. Xu, Z. Liu, Z. Han, M. Zhang, Ethanol/acetaldehyde conversion into butadiene
over sol-gel ZrO2-SiO2 catalysts doped with ZnO, RSC Adv. 7 (2017) 7140–7149,
[13] Y. Sekiguchi, S. Akiyama, W. Urakawa, T.R. Koyama, A. Miyaji, K. Motokura,
T. Baba, One-step catalytic conversion of ethanol into 1,3-butadiene using zinc-
[14] O.V. Larina, P.I. Kyriienko, S.O. Soloviev, Ethanol conversion to 1,3-butadiene on
ZnO/MgO-SiO2 catalysts: effect of ZnO content and MgO:SiO2 ratio, Catal. Letters
[15] C. Angelici, M.E.Z. Velthoen, B.M. Weckhuysen, P.C.A. Bruijnincx, Influence of
acid-base properties on the Lebedev ethanol-to-butadiene process catalyzed by
SiO < inf > 2 < /inf > -MgO materials, Catal. Sci. Technol. 5 (2015) 2869–2879,
[16] M. Zhang, M. Gao, J. Chen, Y. Yu, Study on key step of 1,3-butadiene formation
[17] Z. Han, X. Li, M. Zhang, Z. Liu, M. Gao, Sol-gel synthesis of ZrO2-SiO2 catalysts for
the transformation of bioethanol and acetaldehyde into 1,3-butadiene, RSC Adv. 5
[18] S.H. Chung, C. Angelici, S.O.M. Hinterding, M. Weingarth, M. Baldus, K. Houben,
B.M. Weckhuysen, P.C.A. Bruijnincx, Role of magnesium silicates in wet-kneaded
silica-magnesia catalysts for the Lebedev ethanol-to-butadiene process, ACS Catal. 6
[19] S. Da Ros, M.D. Jones, D. Mattia, J.C. Pinto, M. Schwaab, F.B. Noronha,
S.A. Kondrat, T.C. Clarke, S.H. Taylor, Ethanol to 1,3-Butadiene conversion by using
ZrZn-Containing MgO/SiO2 systems prepared by Co-precipitation and effect of
[20] S. Shylesh, A.A. Gokhale, C.D. Scown, D. Kim, C.R. Ho, A.T. Bell, From sugars to
wheels: the conversion of ethanol to 1,3-Butadiene over metal-promoted magnesia-
[43] W.E. Taifan, G.X. Yan, J. Baltrusaitis, Surface chemistry of MgO/SiO2 catalyst
during the ethanol catalytic conversion to 1,3-butadiene: In-situ DRIFTS and DFT
[21] H.J. Chae, T.W. Kim, Y.K. Moon, H.K. Kim, K.E. Jeong, C.U. Kim, S.Y. Jeong,
10