ChemCatChem
10.1002/cctc.201601009
FULL PAPER
9
4
2
8%] was purchased from Suzhou Sinocompound Technology Co., Ltd.
,4’-dimethoxy-2,2’-bipyridine were purchased from TCI. 4,4’-dihydroxy-
,2’-bipyridine, were synthesized according to the previously reported
[17] F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J.
Klankermayer, W. Leitner, Angew. Chem., Int. Ed., 2010, 49, 5510-
5
514.
[68]
[18] H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika, I. T. Horváth, Top.
Catal., 2008, 48, 49-54.
procedures
.
Preparation of 0.1 mol/L phosphate buffer solution. pH range
from 0.5 to 1.5. Dripping concentrated sulphuric acid into the solution of
phosphoric acid (0.1 mol/L) while measuring the pH with a pH meter. pH
range from 2.0 to 7.0. Making a solution of monosodium orthophosphate
[
[
[
[
19] D. Fegyverneki, L. Orha, G. Láng, I. T. Horváth, Tetrahedron, 2010
6, 1078-1081.
20] A. Strádi, M. Molnár, M. Óvári, G. Dibó, F. U. Richter, L. T. Mika,
Green Chem., 2013, 15, 1857-1862.
21] A. Strádi, M. Molnár, P. Szakál, G. Dibó, D. Gáspára, L. T. Mika, RSC
Adv., 2015, 5, 72529-72535.
22] M. Chalid, H. J. Heeres, A. A. Broekhuis, J. Appl. Polym. Sci., 2012
123, 3556-3564.
,
6
(0.1 mol/L) with the same concentration as the orthophosphoric acid or
disodium hydro-gen phosphate and mixing while measuring the pH with a
pH meter.
,
Preparation of 1 mol/L formate buffer solution. pH range from
.5 to 1.5. Dripping concentrated sulphuric acid into the formic acid
0
[23] I. T. Horváth, H. Mehdi, V. Fábos, L. Boda, L. T. Mika, Green Chem.,
2008, 10, 238-242.
[24] G. Strappaveccia, L. Luciani, E. Bartollini, A. Marrocchi, F. Pizzo, L.
Vaccaro, Green Chem., 2015, 17, 1071-1076.
solution (1 mol/L) while measuring the pH with a pH meter. pH range
from 2.0 to 7.0. Mixing the solution of formic acid (1 mol/L) with the same
concentration as formate while measuring the pH with a pH meter.
[
25] G. Strappaveccia, E. Ismalaj, C. Petrucci, D. Lanari, A. Marrocchi, M.
Drees, A. Facchetti, L. Vaccaro, Green Chem., 2015, 17, 365-372.
26] E. Ismalaj, G. Strappaveccia, E. Ballerini, F. Elisei, O. Piermatti, D.
Gelman, L. Vaccaro, ACS Sustainable Chem. Eng., 2014, 2, 2461-
General catalytic hydrogenation of LA or furfural with H
0.49 mmol) or furfural (0.60 mmol), aqueous solution of catalyst (0.5
mmol/L, 50μL for LA, 100 μL for furfural), and phosphate buffer solution
2 mL) were added to a 10 mL zirconium alloy high-pressure reaction
tube, and stirred at a rate of 900 rpm under 1.0 MPa H , The mixture was
2
. LA
(
[
(
2
464.
27] V. Fa
Csefalvay, V. Kova
2
[
́
bos, M. Y. Lui, Y. F. Mui, Y. Y. Wong, L. T. Mika, L. Qi, E.
cs, T. Szucs, I. T. Horváth, ACS Sustainable
heated to 120 °C for 1 hour. The mixture of substrates and catalyst were
heated to the desired temperature in 10 min and cooled down in water to
room temperature after the reaction. The liquid products were diluted with
acetonitrile and analysed by using GC on a Shimadzu GC-2014 gas
chromatograph equipped with a DB-FFAP capillary column (30 m×0.320
mm×0.25μm) and a flame ionization detector. An internal standard (1-
methyl-2-pyrrolidone) was used to determine the amount of product. The
typical GC chart of the internal standard was showed in Figure s1.
General catalytic hydrogenation of LA or furfural with FA. LA
́
́
̋
Chem. Eng., 2015, 3, 1899-1904.
[
[
28] P. Pongrácz, L. Kollár, L. T. Mika, Green Chem., 2016, 18, 842-847.
29] Y.-W. Wei, D. Xue, Q. Lei, C. Wang, J.-L. Xiao, Green Chem., 2013
15, 629-634.
,
[30] Y. Himeda, N. Onozawa-Komatsuzaki, S. Miyazawa, H. Sugihara, T.
Hirose, K. Kasuga, Chem. Eur. J., 2008, 14, 11076-11081.
[31] J. M. Tukacs, D. Király, A. Strádi, G. Novodarszki, Z. Eke, G. Dibó, T.
Kégl, L. T. Mika, Green Chem., 2012, 14, 2057-2065.
[
[
32] L. Qi, I. T. Horváth, ACS Catal., 2012, 2, 2247-2249.
33] W. Li, J.-H. Xie, H. Lin, Q.-L. Zhou, Green Chem., 2012, 14, 2388-
(
0.49 mmol) or furfural (0.60 mmol), formate buffer solution (2mL),
aqueous solution of catalyst (0.5 mmol/L, 50μL for LA, 100 μL for furfural)
were loaded in sealed glass tube. The catalytic conversion proceeded as
de-scribed above, but in the absence of hydrogen.
2
390.
34] J. Deng, Y. Wang, T. Pan, Q. Xu, Q.-X. Guo, Y. Fu, ChemSuschem,
013, 6, 1163-1167.
35] E. Fujita, J. T. Muckerman, Y. Himeda, Biochim. Biophys. Acta, 2013
827, 1031-1038.
36] W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita,
Chem. Rev., 2015, 115, 12936-12973.
37] D. J. Braden, C. A. Henao, J. Heltzel, C. C. Maravelias, J. A. Dumesic,
Green Chem., 2011, 13, 1755-1765.
[
[
[
[
[
[
2
,
1
Acknowledgements
This work was supported by the 973 Program (2012CB215305),
NSFC (21402181, 21325208), CAS (KJCX2-EW-J02), FRFCU
38] W.-H. Wang, J. F. Hull, J. T. Muckerman, E. Fujita, Y. Himeda, Energy
Environ. Sci., 2012, 5, 7923-7926.
39] J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J.
Szalda, J. T. Muckerman, E. Fujita, Nat. Chem., 2012, 4, 383-388.
40] Y. Himeda, Eur. J. Inorg. Chem., 2007, 25, 3927-3941.
41] Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, K. Kasuga,
Organometallics, 2007, 26, 702-712.
(WK2060190025) and SRFDP (20123402130008).
[
[
Keywords: furfural • biomass • homogeneous catalysis • iridium
γ-valerolactone
•
[42] Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, K. Kasuga, J.
Photochem. Photobiol. A: Chem., 2006, 182, 306-309.
[
[
[
[
[
[
[
[
[
[
[
[
[
[
43] Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, K. Kasuga, J. Am.
Chem. Soc., 2005, 127, 13118-13119.
44] S. Ogo, R. Kabe, H. Hayashi, R. Harada, S. Fukuzumi, Dalton Trans.,
[
[
[
1]
G.-S. Yi, S.-P. Teong, X.-K. Li, Y.-G. Zhang, ChemSusChem, 2014
, 2131-2135.
G. W. Huber, S. Iborra, A. Corma, Chem. Rev., 2006, 106, 4044-
098.
W.-W. Hao, W.-F. Li, X. Tang, X.-H. Zeng, Y. Sun, S.-J. Liu, L. Lin,
Green Chem., 2016, 18, 1080-1088.
,
7
2]
3]
2
006, 39, 4657-4663.
4
45] W.-P. Wu, Y.-J. Xu, R. Zhu, M.-S. Cui, X.-L. Li, J. Deng, Y. Fu,
ChemSusChem, 2016, 9, 1209-1215.
46] T. P. Brewster, A. J. M. Miller, D. M. Heinekey, K. I. Goldberg, J. Am.
Chem. Soc., 2013, 135, 16022-16025.
[
[
4]
5]
J.-Z. Chen, G.-Y. Zhao, L.-M. Chen, RSC Adv., 2014, 4, 4194-4202.
B. Zhang, Y.-L. Zhu, G.-Q. Ding, H.-Y. Zheng, Y.-W. Li, Green Chem.,
47] T. Abura, S. Ogo, Y. Watanabe, S. Fukuzumi, J. Am. Chem. Soc.,
2
012, 14, 3402-3409.
2
003, 125, 4149-4154.
48] J. H. Barnard, C. Wang, N. G. Berry, J.-L. Xiao, Chem. Sci., 2013, 4,
234-1244.
49] T. Miyada, E. H. Kwan, M. Yamashita, Organometallics, 2014, 33,
760-6770.
[
[
[
6]
7]
8]
D. Shi, J. M. Vohs, ACS Catal., 2015, 5, 2177-2183.
J. W. Medlin, ACS Catal., 2011, 1, 1284-1297.
1
D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Chem. Soc. Rev., 2012
,
4
1, 8075-8098.
6
[
[
9]
Y.-T. Cheng, G. W. Huber, ACS Catal., 2011, 1, 611-628.
50] G. Wienhöefer, F. A. Westerhaus, K. Junge, M. Beller, J. Organomet.
Chem., 2013, 744, 156-159.
51] R. Patchett, I. Magpantay, L. Saudan, C. Schotes, A. Mezzetti, F.
Santoro, Angew. Chem. Int. Ed., 2013, 52, 10352-10355.
10] J. C. Serrano-Ruiz, R. Luque, A. Sepúlveda-Escribano, Chem. Soc.
Rev., 2011, 40, 5266-5281.
11] M. Möller, P. Nilges, F. Harnisch, U. Schröder, ChemSusChem, 2011
, 566-579.
12] J. Lee, Y. Xu, G. W. Huber, Appl. Catal. B: Environ., 2013, 140, 98-
07.
13] S. Paganelli, O. Piccolo, P. Pontini, R. Tassini, V. D. Rathod, Catal.
Today, 2015, 247, 64-69.
14] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López
Granados, Energy Environ. Sci., 2016, 9, 1144-1189.
[
[
[
[
[
[
,
4
52] A. S. Gowda, S. Parkin, F. T. Ladipo, Appl. Organomet. Chem., 2012
6, 86-93.
53] H.-R. Huo, Z.-Q. Zhou, A.-Q. Zhang, L.-M. Wu, Res. Chem. Intermed.,
012, 38, 261-268.
,
2
1
2
54] S.-H. Zhu, Y.-F. Xue, J. Guo, Y.-L. Cen, J.-G. Wang, W.-B. Fan, ACS
Catal., 2016, 6, 2035-2042.
55] F. A. Westerhaus, B. Wendt, A. Dumrath, G. Wienhöefer, K. Junge,
M. Beller, ChemSusChem, 2013, 6, 1001-1005.
15] D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Green Chem., 2013, 15,
5
84-595.
56] A. D. Chowdhury, R. Jackstell, M. Beller, ChemCatChem, 2014, 6,
16] F. M. A. Geilen, B. Engendahl, M. Hölscher, J. Klankermayer, W.
3
360-3365.
Leitner, J. Am. Chem. Soc., 2011, 133, 14349-14358.
This article is protected by copyright. All rights reserved.