.
Angewandte
Communications
´
[5] a) J. Lewinski, M. Koscielski, K. Suwala, I. Justyniak, Angew.
(only two THF per Li in 3). The two lithium atoms are located
Chem. 2009, 121, 7151 – 7154; Angew. Chem. Int. Ed. 2009, 48,
7017 – 7020; b) J. Lewinski, W. Sliwinski, M. Dranka, I. Justy-
niak, J. Lipkowski, Angew. Chem. 2006, 118, 4944 – 4947; Angew.
Chem. Int. Ed. 2006, 45, 4826 – 4829; c) J. Lewinski, W. Marci-
À
on opposite sides of the Si4-Si1-Si7 plane. The average Si Zn
´
´
´
À
bond length in 4 (2.384 ꢀ) is slightly longer than r(Si Zn) in 3
À
(2.362 ꢀ). The Si Li bond lengths in 4 are in the range of
´
r(Si Li) distances (2.64–2.77 ꢀ[24]) in other THF-solvated
À
niak, J. Lipkowski, I. Justyniak, J. Am. Chem. Soc. 2003, 125,
12698 – 12699; d) P. G. Cozzi, A. Mignogna, P. Vicennati, Adv.
Maciꢃ, A. J. Minnaard, B. L. Feringa, Angew. Chem. 2008, 120,
1337 – 1339; Angew. Chem. Int. Ed. 2008, 47, 1317 – 1319; f) J.
Maury, L. Feray, S. Bazin, J.-L. Clꢄment, S. R. A. Marque, D.
Cohen, H. Gibney, R. Ivanov, E. A.-H. Yeh, I. Marek, D. P.
lithiosilanes.
À
In conclusion, we have demonstrated that Si H bonds can
be activated by organozinc and silylzinc compounds in the
presence of minute amounts of radical initiators, such as
tBu2Hg or AIBN, yielding zinciosilanes in good yields in
a single-pot reaction. Furthermore, activation of dihydrido-
silanes leads in a single-pot reaction to geminal dizincio-
silanes. We also synthesized the novel zincio-bridged dis-
ilyllithiums 3 and 4, which have three and four metal–silicon
bonds, respectively. We continue to study the scope of the
approach presented herein for the synthesis of other novel
zinciosilane reagents, as well as to explore the chemistry and
the synthetic versatility of these novel reagents.
[7] a) C. Chatgilialoglu, Organosilanes in Radical Chemistry, Wiley,
[8] a) H. F. T. Klare, M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki, K.
The Chemistry of Organozinc Compounds (Eds.: Z. Rappoport,
I. Marek), Wiley, Chichester, 2006.
Received: January 6, 2012
Revised: February 16, 2012
Published online: April 3, 2012
À
Keywords: dialkyl zinc compounds · Si H activation · silicon ·
silyl radicals · zinc
.
[11] J. Arnold, T. D. Tilley, A. L. Rheingold, S. J. Geibt, Inorg. Chem.
[1] a) P. Knochel, H. Leuser, L. Gong, S. Perrone, F. Kneisel The
Chemistry of Organozinc Compounds (Eds.: Z. Rappoport, I.
Marek), Wiley, Chichester, 2006; b) P. Knochel, N. Millot, A. L.
Rodriguez, C. E. Tucker in Organic Reactions, Wiley, Hoboken,
669 – 683; f) I. Hemeon, R. Singer, Sci. Synth. 2002, 4, 225 – 230;
g) M. Yonehara, S. Nakamura, A. Muranaka, M. Uchiyama,
[2] a) B. Tumanskii, M. Karni, Y. Apeloig in Encyclopedia of
Radicals in Chemistry, Biology and Materials, Vol. 3 (Eds.: C.
Chatgilialoglu, S. Studer), Wiley, Chichester, 2012, pp. 2117 –
2146; b) D. Bravo-Zhivotovskii, M. Yuzefovich, N. Sigal, G.
Korogodsky, K. Klinkhammer, B. Tumanskii, A. Shames, Y.
d) Y. Apeloig, D. Bravo-Zhivotovskii, M. Yuzefovich, M. Bend-
Wiberg, K. Amelunxen, H. W. Lerner, H. Noeth, A. Appel, J.
1870; f) N. S. Vyazankin, G. A. Razuvaev, O. A. Kruglaya,
Organomet. Chem. Rev. 1968, 3, 323 – 423.
[3] a) D. Bravo-Zhivotovskii, G. Molev, V. Kravchenko, M. Botosh-
4721; b) D. Bravo-Zhivotovskii, B. Tumanskii, M. Yuzefovich, I.
4509 – 4530; b) D. V. Gendin, L. I. Rybin, T. I. Vakulꢁskaya,
O. A. Vyazankina, N. S. Vyazankin, Izv. Akad. Nauk SSSR Ser.
Khim. 1984, 10, 2381 – 2383.
À
[12] The calculated bond dissociation energies of the Zn C bonds in
Et2Zn and tBu2Zn are 156 and 116 kJmolÀ1, respectively; see: A.
Haaland, J. C. Green, G. S. McGrady, A. J. Downs, E. Gullo,
M. J. Lyall, J. Timberlake, A. V. Tutukin, H. V. Volden, K.-A.
[13] Metalation of several silanes by RLi in THF was previously
reported; see: T. Iwamoto, J. Okita, C. Kabuto, M. Kira, J. Am.
[14] a) A detailed description of the preparation of Cl-
(tBuMe2Si)2SiH is given in the Supporting Information; b) For
a different synthesis see: T. Iwamoto, J. Okita, N. Yoshida, M.
[15] Crystallographic data for 3: C40H92Li2O4Si6Zn, Mr = 884.96,
monoclinic, space group C2/c, a = 14.929(3), b = 19.260(4), c =
20.536(4) ꢀ, b = 102.43(3)8, V= 5766(2) ꢀ3, Z = 4, Nonius
Kappa CCD, MoKa radiation (0.71073 ꢀ), 240 K, 2Vmax = 258,
R = 0.0636 (I > 2sI), wR2 = 0.1561 (I > 2sI), Rw = 0.1421 (all
data), GOF = 0.862. Further crystallographic data of 3 is given in
the Supporting Information. CCDC 858766 (3) contains the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
[18] D. Bravo-Zhivotovskii, R. Dobrovetsky, D. Nemirovsky, V.
Molev, M. Bendikov, G. Molev, M. Botoshansky, Y. Apeloig,
[19] Handbook of Chemistry and Physics, 90th ed., CRC, Boca Raton,
FL, 2009 – 2010.
[20] D. Bravo-Zhivotovskii, I. Ruderfer, M. Yuzefovich, M. Kosa, M.
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2012, 51, 4671 –4675