an oxidant, often requiring activation by metal catalysts or
elevated temperatures.26ꢀ34
To our knowledge, no example utilizing molecular
oxygen as the terminal oxidant for Dakin oxidations
exists. Here we achieve a catalytic system in which O2 is
activated by flavin catalysts, and the Hantzsch ester 2 is an
effective reducing agent,35,36 completing the catalytic cycle,
to perform transition-metal-free, efficient, and mild Dakin
oxidations.
Hydrogen peroxide based Dakin oxidations were pre-
viously investigated in our laboratory with five 1,3,5-
trialkylated alloxazines (1aꢀe), a class of flavins documen-
ted to attain considerable stability15 and a range of cata-
lytic activity in comparison to related alloxazines and
isoalloxazines.15,18,37,38 The new 4a-hydroperoxyflavin
catalyst 1a proved most efficient in Dakin oxidations.23
We initiated the aerobic Dakin oxidation of arylaldehydes by
applying similar conditions using these alloxazine catalysts.
Figure 1. Flavin catalysts 1aꢀe and Hantzsch ester 2.
using molecular oxygen10ꢀ12 or hydrogen peroxide13ꢀ18
as terminal oxidants. In previous work, hydrazine and
zinc dust effectively reduced flavin mimics to complete an
aerobic catalytic cycle.10,11,19ꢀ22 However, these reducing
agents are not fully compatible with aldehyde substrates. In
search of new nucleophilic flavin oxidations, we discovered
that hydroperoxyflavins efficiently performed the Dakin
oxidation of electron-rich benzaldehydes.23 Pleasingly,
the flavin-catalyzed oxidation of electron-poor benzalde-
hydes to benzoic acids was recently reported by a similar
mechanism.24 The Dakin oxidation (Scheme 1) is related to
the BaeyerꢀVilliger oxidation.25 Many methods have been
investigated to perform this transformation. Most Dakin
oxidation methods utilize hydrogen peroxide or peracids as
Scheme 1. General Mechanism for Organocatalytic Aerobic
Oxidation of Substrate 3 to 4 by 4a-Hydroperoxyflavin 1c
(11) Imada, Y.; Iida, H.; Murahashi, S.-I.; Naota, T. Angew. Chem.,
Int. Ed. 2005, 44, 1704–1706.
(12) Imada, Y.; Iida, H.; Ono, S.; Masui, Y.; Murahashi, S.-I.
Chem.;Asian. J 2006, 1, 136–147.
(13) Murahashi, S.-I.; ODA, T.; Masui, Y. J. Am. Chem. Soc. 1989,
111, 5002–5003.
(14) Mazzini, C.; Lebreton, J.; Furstoss, R. J. Org. Chem. 1996, 61, 8–9.
€
(15) Bergstad, K.; Backvall, J.-E. J. Org. Chem. 1998, 63, 6650–6655.
€
(16) Minidis, A. B.; Backvall, J. E. Chem.;Eur. J. 2001, 7, 297–302.
(17) Murahashi, S.-I.; Ono, S.; Imada, Y. Angew. Chem., Int. Ed.
2002, 41, 2366–2368.
ꢀ
€
(18) Linden, A. A.; Johansson, M.; Hermanns, N.; Backvall, J.-E.
J. Org. Chem. 2006, 71, 3849–3853.
(19) Imada, Y.; Iida, H.; Naota, T. J. Am. Chem. Soc. 2005, 127,
14544–14545.
(20) Imada, Y.; Iida, H.; Kitagawa, T.; Naota, T. Chem.;Eur. J.
2011, 17, 5908–5920.
(21) Imada, Y.; Kitagawa, T.; Ohno, T.; Iida, H.; Naota, T. Org.
Lett. 2010, 12, 32–35.
(22) Smit, C.; Fraaije, M. W.; Minnaard, A. J. J. Org. Chem. 2008, 73,
9482–9485.
Reducing agent selection was key to the success of
catalytic aerobic Dakin oxidations (Scheme 1). Based on
previous aerobic amine, sulfur, and BaeyerꢀVilliger oxi-
dation methods, hydrazine and zinc were regarded as
efficient reducing agents to reduce oxidized flavin mimics
(Flþ).10,11 Hydrazine predictably forms hydrazones with
benzaldehyde substrates, yielding no desired product.
Activated zinc showed good reactivity in the oxidation of
salicylaldehyde to produce catechol. However, when the
(23) Chen, S.; Hossain, M. S.; Foss, F. W., Jr. Org. Lett. 2012, 14,
2806–2809.
(24) Murray, A. T.; Matton, P.; Fairhurst, N. W. G.; John, M. P.;
Carbery, D. R. Org. Lett. 2012, 14, 3656–3659.
(25) Dakin, H. D. Am. Chem. J. 1909, 62, 477–498.
(26) Kabalka, G. W.; Reddy, N. K.; Narayana, C. Tetrahedron Lett.
1992, 33, 865–866.
(27) Yamazaki, S. Chem. Lett. 1995, 127–128.
(28) Roy, A.; Reddy, K. R.; Mohanta, P. K.; Ila, H.; Junjappat, H.
Synth. Commun. 1999, 29, 3781–3791.
^
(29) Zambrano, J. L.; Dorta, R. Synlett 2003, 2003, 1546–1546.
(30) Brink, ten, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Rev.
2004, 104, 4105–4124.
(31) Bernini, R.; Coratti, A.; Provenzano, G.; Fabrizi, G.; Tofani, D.
Tetrahedron 2005, 61, 1821–1825.
(34) da Silva, E. T.; Camara, C. A.; Antunes, O. A. C.; Barreiro, E. J.;
Fraga, C. A. M. Synth. Commun. 2008, 38, 784–788.
(35) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13,
1084–1105.
(36) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498–2518.
€
(37) Bergstad, K.; Jonsson, S. Y.; Backvall, J.-E. J. Am. Chem. Soc.
(32) Hansen, T. V.; Skattebøl, L. Tetrahedron Lett. 2005, 46, 3357–
3358.
(33) Bernini, R.; Mincione, E.; Barontini, M.; Crisante, F.; Fabrizi,
G.; Gambacorta, A. Tetrahedron 2007, 63, 6895–6900.
1999, 121, 10424–10425.
(38) Closson, A.; Johansson, M.; Backvall, J.-E. Chem. Commun.
€
2004, 1494–1495.
Org. Lett., Vol. 14, No. 19, 2012
5151