Journal of the American Chemical Society
Page 4 of 6
J. N. Ethylene Sensing by Silver(I) Salt-Impregnated Luminescent Films.
Inorg. Chem. 2012, 51, 2737–2746.
ethylene. The probes do not appear to react significantly with olefins
that are not rapidly reacting type I olefins, however a steady increase in
background fluorescence is observed. A dose dependent increase in
fluorescence upon exposure to ethylene gas is observed. Slight
structural variation provides some variance in fold turn-on and rate of
reaction with ethylene. While these initial findings are promising,
structure-activity studies to improve sensitivity by varying the ligand
identities on Ru are being investigated. Both BEP-4 and BEP-5 were
capable of detecting ethylene in a cellular environment. Efforts to apply
these probes in plant cells, such as Arabidopsis thaliana are currently
underway.
1
2
3
4
5
6
7
8
(6)
Esser, B.; Swager, T. M. Detection of ethylene gas by fluores-
cence turn-on of a conjugated polymer. Angew. Chem., Int. Ed., 2010, 49,
8872-8875.
(7)
Esser, B.; Schnorr, J. M.; Swager, T. M. Selective detection of
ethylene gas using carbon nanotube-based devices: Utility in determination
of fruit ripeness. Angew. Chem., Int. Ed., 2012, 51, 5752-5756.
(8)
Hitomi, Y.; Nagai, T.; Kodera, M. A silver complex with an
N,S,S-macrocyclic ligand bearing an anthracene pendant arm for optical
ethylene monitoring. Chem. Commun. 2012, 48, 10392-10394.
9
(9)
(a) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent Chemo-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
dosimeters for Bioimaging. Chem. Rev. 2013, 113, 192-270; (b) Chan, J.;
Dodani, S. C.; Chang, C. J. Reaction-based small-molecule fluorescent
probes for chemoselective bioimaging. Nat. Chem., 2012, 4, 973-984 .
(10) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. A
General Model for Selectivity in Olefin Cross Metathesis. J. Am. Chem.
Soc., 2003, 125, 11360-11370.
ASSOCIATED CONTENT
The supporting information is available free of charge on the
ACS Publications website at DOI:
Experimental details, including synthesis and characterization,
selectivity assays, spectroscopic methods, cellular imaging
methods.
(11) Lakowicz, J. R. Principles of Fluorescence Spectroscopy,
Springer US 2006.
(12) (a) Franz, K. J.; Singh, N.; Spingler, B.; Lippard, S. J. Metal-
Based NO Sensing by Selective Ligand Dissociation. Angew. Chem., Int.
Ed., 2000, 39, 4081-4092 (b) Hilderbrand, S. A.; Lippard, S. J. Cobalt
Chemistry with mixed Aminotroponiminate Salicylaldiminate Ligands:
Synthesis, Characterization, and Nitric Oxide Reactivity. Inorg. Chem.
2004, 43, 4674-4682 (c) Tsuge, K.; DeRosa, F.; Lim, M. D.; Ford, P. C.
Intramolecular Reductive Nitrosylation: Reaction of Nitric Oxide and
Copper(II) Complex of a Cyclam Derivative with Pendand Luminescent
Chromophores. J. Am. Chem. Soc. 2004, 126, 6564-6565. (d) Lim, M. H.;
Wong, B. A.; Pitcock, W. H., Jr.; Mokshagundam, D.; Baik, M.-H.; Lippard,
S. J. Direct Nitric Oxide Detection in Aqueous Solution by Copper(II)
Fluorescein Complexes. J. Am. Chem. Soc., 2006, 128, 14364-14373 (e)
Rivera-Fuentes, P.; Lippard, S. J. Metal-Based Optical Probes for Live Cell
Imaging of Nitroxyl (HNO). Acc. Chem. Res., 2015, 48, 2927-2934. (f)
McQuade, L. E.; Pluth, M. D.; Lippard, S. J. Mechanism of Nitric Oxide
Reactivity and Fluorescence Enhancement of the NO-Specific Probe
CuFl1. Inorg. Chem. 2010, 49, 8025-8033.
(13) (a) Michel, B. W.; Lippert, A. R.; Chang, C. J. "A Reaction-
Based Fluorescent Probe for Selective Imaging of Carbon Monoxide in
Living Cells Using a Palladium-Mediated Carbonylation." J. Am. Chem.
Soc., 2012, 134, 15668-15671. (b) Zheng, K.; Lin, W.; Tan, L.; Chen, H.;
Cui, H. "A unique carbazole-coumarin fused two-photon platform: devel-
opment of a robust two-photon fluorescent probe for imaging carbon
monoxide in living tissues." Chem. Sci., 2014, 5, 3439-3448. (c) Moragues,
M. E.; Toscani, A.; Sancenon, F.; Martinez-Manez, R.; White, A. J. P.; Wil-
ton-Ely, J. D. E. T. A Chromo-Fluorogenic Synthetic “Canary” for CO
Detection Based on a Pyrenylvinyl Ruthenium(II) Complex. J. Am. Chem.
Soc. 2014, 136, 11930-11933.(d) Torre, C. d. l.; Toscani, A.; Marin-
Hernandez, C.; Robson, J. A.; Terencio, M. C.; White, A. J. P.; Alcaraz, M.
J.; Wilton-Ely, J. D. E. T.; Martinez-Manez, R.; Sancenon, F. Ex Vivo Track-
ing of Endogenous CO with a Ruthenium(II) Complex. J. Am. Chem. Soc.,
2017, 139, 18484-18487; (e) Sun, M.; Yu, H.; Zhang, K.; Wang, S.; Hayat,
T.; Alsaedi, A.; Huang, D. Palladacycle Based Fluorescence Turn-On Probe
for Sensitive Detection of Carbon Monoxide. ACS Sens., 2018, 3, 285-289.
(14) (a) Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura,
Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kimura, H.; Nagano, T. Development
of a Highly Selective Fluorescence Probe for Hydrogen Sulfide. J. Am.
Chem. Soc., 2011, 133, 18003-18005 (b) Choi, M. G.; Cha, S.; Lee, H.;
Jeon, H. L.; Chang, S.-K. Sulfide-selective chemosignaling by a Cu2+ com-
plex of dipicolylamine appended fluorescein. Chem. Commun. (Cam-
bridge, U. K.), 2009, 7390-7392 (c) Hou, F.; Huang, L.; Xi, P.; Cheng, J.;
Zhao, X.; Xie, G.; Shi, Y.; Cheng, F.; Yao, X.; Bai, D.; Zeng, Z. A Retrievable
and Highly Selective Fluorescent Probe for Monitoring Sulfide and Imag-
ing in Living Cells. Inorg. Chem., 2012, 51, 2454-2460 (d) Hou, F.; Cheng,
J.; Xi, P.; Chen, F.; Huang, L.; Xie, G.; Shi, Y.; Liu, H.; Bai, D.; Zeng, Z.
Recognition of copper and hydrogen sulfide in vitro using a fluorescein
derivative indicator. Dalton Trans. 2012, 41, 5799-5804. (e) Wang, M. Q.;
Li, K.; Hou, J. T.; Wu, M. Y.; Huang, Z.; Yu, X. Q. BINOL-Based Fluores-
AUTHOR INFORMATION
Corresponding Author
ORCID
Brian W. Michel: 0000-0002-4737-8196
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support from the University of Denver is gratefully
acknowledged. We thank Professor Michelle Knowles and Alan
Weisgerber (University of Denver) for assistance with cell
culture and imaging. We thank Professor Krishna Niyogi and
Dr. Masakazu Iwai (University of California, Berkeley) for
providing Chlamydomonas and helpful suggestions for imaging.
REFERENCES
(1)
(a) Wang, K. L. C.; Li, H.; Ecker, J. R. Ethylene biosynthesis and
signaling networks. Plant Cell, 2002, 14, S131-S151; (b) Alonso, J. M.;
Stephanova, A. N. The ethylene signaling pathway. Science 2004, 306,
1513-1515; (c) Light, K.M.; Wisniewski J.A.; Vinyard W.A.; Kieber-
Emmons M.T. Perception of the plant hormone ethylene: known-knowns
and known-unknowns. J. Biol. Inorg. Chem. 2016, 21, 715-728.
(2)
(a) Cristescu, S. M.; Mandon, J.; Arslanov, D.; De Pessemier, J.;
Hermans, C.; Harren, F. J. M. Current methods for detecting ethylene in
plants. Ann. Bot., 2013, 111, 347-360; (b) Caprioli, F.; Quercia, L. Eth-
ylene detection methods in post-harvest technology: A review. Sens. Actua-
tors, B, 2014, 203, 187-196.
(3)
(a) Yoo, S.-D.; Cho, Y.; Sheen, J. Emerging connections in the
ethylene signaling network. Trends Plant Sci., 2009, 14, 270-279; (b)
Jedermann, R.; Praeger U.; Geyer, M.; Lang W. Remote quality monitoring
in the banana chain. Phil. Trans. R. Soc. A. 2014, 372, 20130303; (c)
Janssen S.; Schmitt K.; Blanke M.; Bauersfeld M.L.; Wöllenstein J.; Lang
W. Ethylene detection in fruit supply chains. Phil. Trans. R. Soc. A. 2014,
20130311 .
(4)
ing to Catalysis, University Science Books, 2010.
(5) (a) Green, O.; Smith, N. A.; Ellis, A. B.; Burstyn J. N. AgBF4-
Hartwig, J. F. Organotransition Metal Chemistry: From Bond-
Impregnated Poly(vinyl phenyl ketone): An Ethylene Sensing Film J. Am.
Chem. Soc. 2004, 126, 5952–5953; (b) Cintrón, M. S.; Green, O.; Burstyn,
ACS Paragon Plus Environment