Page 3 of 3
ChemComm
DOI: 10.1039/C4CC07872A
aSRM Research Institute, SRM University, Kattankulathur, Chennai,
45 603203, India, E-mail:sasidharan.m@res.srmuniv.ac.in.
results in diminished reactivity. Entries 5 and 6 exhibit difference
in migratory aptitude of substituted cyclohexanones; 2-
methylcyclohexanone yields 7-methyloxepane-2-one as the sole
product whereas 3-methylcyclohexanone leads mixture of
lactones (ca. 6-methyloxepan-2-one and 4-methyloxepan-2-one)
b Department of Material Science, Indian Association for the Cultivation
of Science, Jadavpur, Kolkata 700 032, India, E-mail: msab@iacs.res.in
† Electronic Supplementary Information (ESI) available: [Preparation of
micelles and hollow nanospheres. TEM, SEM, XRD, TG-DTA, and UV-
5
similar to literature reports.18 Cycloheptanone forms the 50 visible data]. See DOI: 10.1039/b000000x/
Acknowledgements. We thank SERB-DST for their partial research
supports (Grand nos. SB/S1/PC-043/2013 and SR/S1/IC-61/2012).
corresponding lactone at high turn-over number (entry 7). The
acyclic methyl ethyl ketones and isobutyl methyl ketone also lead
to formation of corresponding ester in very high yields (entries 8
1
(a) F. Caruso, Adv. Mater., 2001, 13, 11; (b) M. A. El-Sayed, Acc.
Chem. Res., 2001, 34, 257; (c) Y. C. Cao, R. Jin and C. A. Mirkin,
Science 2002, 297, 1536; (d) R. Narayanan and M. A. El-Sayed,
Nano Lett., 2004, 4, 1343; (e) C. Wang, H. Aimon, T. Onodera, T.
Koda and S. Sun, Angew. Chem. Int. Ed., 2008, 47, 3588; (f) C.
Chen, X. L. Fang, B. H. Wu, L. J. Huang and N. F. Zheng,
ChemCatChem, 2012, 4, 1578; (g) J. Yin, Y. S. Zang, C. Yue, Z. M.
Wu, S. T. Wu, J. Li and Z. H. Wu, J. Mater. Chem. 2012, 22, 7902;
(h) X. Ma, Y. Zhao, K. W. Ng and Y. L. Zhao, Chem. Eur. J., 2013,
19, 15593; (i) C. Li and Y. Yamauchi, Phys. Chem. Chem. Phys.
2013, 15, 3490.
10 and 9). Entry 10 shows the activity of Ag nanoparticles of size 8
± 1nm that exhibits lower activity than Ag hollow particles
possibly due to presence of PVP stabilizer (Fig. S7 ESI†) .
Furthermore, we have also scrutinized the micron-sized Ag
hollow nanoparticles (entry 11, Fig. S8, ESI†) synthesized by
15 layer-layer technique realized lower activity due to less catalytic
binding sites of larger particles. We have recycled the catalyst for
cyclohexanone oxidation for 5 repetitive cycles after activating
the catalyst with nitrogen containing 5 % H2 at 120 °C for 3 h and
Ag particles also retain the crystallinity (Fig. S9 ESI†). In the fifth
20 cycle the conversion and TON were nearly maintained compared
to the pristine catalysts under similar conditions (entry 12).
55
60
65
70
75
80
85
90
95
2
3
(a) S. W. Kim, M. Kim, W. Y. Lee and T. Hyeon, J. Am. Chem. Soc.,
2002, 124, 7642; (b) S. Anandhakumar, M. Sasidharan, C. W. Tsao
and A. M. Raichur, ACS Appl. Mater. Interface 2014, 6, 3275.
(a) A. Nagy and G. Mestl, Appl. Catal. A: Chem., 1999, 188, 337; (b)
E. K. Jeon, E. Seo, E. Lee, W. Lee, M. K. Um and B. S. Kim, Chem.
Commun., 2013, 49, 3392.
Table 1. Baeyer-Villiger oxidation of ketonesa
O
O
Ag-catalyst, 85 oC
O
4
5
A. Zhong, Y. Yin, B. Gates and Y. Xia, Adv. Mater., 2000, 12, 206.
F. Caruso, M. Spasova, V. Salgucirifio-Maceira and L. M. Liz-
Marzan, Adv. Mater., 2001, 13, 1090.
tert-butylhydroperoxide
6
7
D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka and S. Mann, Nat. Mater.,
2003, 2, 386.
Entry Substrates
Conversion, TON
mole %
(a) B. Wiley, Y. Sun and Y. Xia, Acc. Chem. Res., 2007, 40, 1067;
(b) L. Wang and D. Chen, Mater. Lett., 2007, 61, 2113; (c) A. B.
Moshe and G. Markovich, Chem. Mater., 2011, 23, 1239; (d) R.
Zheng, X. Guo and H. Fu, Appl. Surf. Sci., 2011, 257, 2367; (e) X. H.
Li, Y. C. Li, C. H. Yang and Y. F. Li, Langmuir 2004, 20, 3734; (f)
H. Ataee-Esfahani, J. Liu, M. Hu, N. Miyamoto, S. Tominaka, K. C.
W. Wu and Y. Yamauchi, Small, 2013, 9, 1047; (g) D. Zhang, L. Qi,
J. Ma, H. Cheng, Adv. Mater. 2002, 14, 1499.
1b
2c
3d
4e
5
6
7
8
9
Cyclohexanone
Cyclohexanone
Cyclohexanone
Cyclohexanone
3-methylcyclohexanone
4-methylcyclohexanone
Cycloheptanone
Ethyl methyl ketone
Methyl isobutyl ketone
Cyclohexanone
63.8
78.3
98.8
83.0
93.2
95.6
91.7
96.5
92.8
74.7
74.5
98.1
10.4
12.7
16.1
13.5
15.0
15.4
14.9
15.6
15.0
12.1
13.0
15.8
8
(a) A. Khanal, Y. Inoue, M. Yada and K. Nakashima, J. Am. Chem.
Soc., 2007, 129, 1534; (b) M. Sasidharan and K. Nakashima, Acc.
Chem. Res., 2014, 47, 157; (c) M. Sasidharan, K. Nakashima, N.
Gunawardhana, T. Yokoi, M. Inoue, S. Yusa, M. Yoshio, T. Tatsumi,
Chem. Commun., 2011, 47, 6921; (d) M. Sasidharan, N.
Gunawardhana, M. Inoue, S. Yusa, M. Yoshio, K. Nakashima, Chem.
Commun., 2012, 48, 3200; (e) S. K. Das, M. K. Bhunia, D.
Chakraborty, A. R. Khuda-Bukhsh and A. Bhaumik, Chem. Commun.
2012, 48, 2891 (f) M. Sasidharan, H. Zenibana, M. Nandi, A.
Bhaumik and K. Nakashima, Dalton Trans., 2013, 42, 13381.
(a) G. Strukul, Ang. Chem. Int. Ed., 1998, 37, 1198; (b) C. J.
Sanchidrian and J. R. Ruiz, Tetrahedron 2008, 64, 2011; (c) Y. Zou
and Y. Wang, Nanoscale 2011, 3, 2615.
10f
11g
12h
Cyclohexanone
Cyclohexanone
25 aReaction conditions: ketone = 3 mmol (0.28 g); tert-butylhydroperoxide
= 3.3 mmol (70 % anhydrous solution), acetonitrile = 5 mL, 10 wt %
catalysts with respect to substrate, 0.1 mmol naphthalene was used as
internal standard, Reaction time = 4 h and temperature 85°C and the
reaction was carried out in N2 atmosphere. btoluene solvent; cTHF solvent
30 dacetonitrile solvent; cbenzaldehyde/O2 as oxidant; fDense silver
nanoparticles ( 8 ± 1 nm) as catalysts; ghollow silver microsphere as
catalysts; and hreused catalyst after 5 cycles.
9
10 L. Longenberger and G. Mills, J. Phys. Chem., 1995, 99, 475.
11 H. Liang, W. Wang, Y. Huang, S. Zhang, H. Wei and H. Xu, J. Phys.
Chem. C 2010, 114, 7427.
100 12 S. Porel, S. Singh, S. S. Harsha, D. N. Rao and T. P. Radhakrishnan,
Chem. Mater., 2005, 17, 9.
In conclusion, we have demonstrated novel strategy for
efficient and simple fabrication of silver hollow nanospheres
35 using PS-b-PVP-b-PEO polymeric micelles with core-shell-
corona architectures. The present method enables us to prepare
hollow spherical particles of size less than 30 nm with high
crystallinity, size tenability, and monodispersity. The silver
hollow particles efficiently catalyze various cyclic- and acyclic-
40 ketones to the corresponding lactones and esters at high yields
under liquid-phase conditions, suggesting future potential of this
unique Ag nanoarchitecture in efficient catalysis.
13 D. Liu and K. Nakashima, Inorg. Chem., 2009, 48, 3898.
14 J. Zeng, J. Tan, W. Li, J. Grant, P. Wang, Y. Zhu and Y. Xia, Chem.
Asian J. 2010, 6, 376.
105 15 Z. Liu, H. Zhou, Y. S. Lim, J. H. Song, L. Piao and S. H. Kim,
Langmuir, 2012, 28, 9244.
16 (a) J. Fischer and W. F. Holderich, Appl. Catal. A: Gen. 1999, 180,
435; (b) A. Corma, M. T. Nemeth, M. Renz and S. Valencia, Nature
2001, 412, 423.
110 17 M. Paul, N. Pal, J. Mondal, M. Sasidharan and A. Bhaumik, Chem.
Eng. Sci., 2012, 71, 564.
18 H. Subramanian, E. G. Nettleton, S. Budhi and R. T. Koodali, J. Mol.
Catal. A: Chem., 2010, 330, 66.
Notes and references
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3