118
P. Gadler et al. / Tetrahedron: Asymmetry 20 (2009) 115–118
20. No selectivity-enhancing effects through medium-engineering were found
References
with Rhodococcus ruber DSM 44540, Nocardia nova DSM 43843 and Ralstonia
sp. DSM 6428.
21. Nguyen, B.-V.; Nordin, O.; Voerde, C.; Hedenstroem, E.; Hoegberg, H.-E.
Tetrahedron: Asymmetry 1997, 8, 983–986.
1. Hagelueken, G.; Adams, T. M.; Wiehlmann, L.; Widow, U.; Kolmar, H.; Tümmler,
B.; Heinz, D. W.; Schubert, W.-D. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 7631–7636.
2. Gadler, P.; Faber, K. Trends. Biotechnol. 2007, 25, 83–88.
22. Mezzetti, A.; Keith, C.; Kazlauskas, R. J. Tetrahedron: Asymmetry 2003, 14, 3917–
3. Hanson, S. R.; Best, M. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2004, 43, 5736–
5763.
3924.
23. Palomo, J. M.; Fernandez-Lorente, G.; Mateo, C.; Fuentes, M.; Fernandez-
Lafuente, R.; Guisan, J. M. Tetrahedron: Asymmetry 2002, 13, 1337–1345.
24. (a) Bornscheuer, U. T. Angew. Chem., Int. Ed. 1998, 37, 3105–3108; (b) Reetz, M.
T. Adv. Catal. 2006, 49, 1–69.
25. (a) Ueji, S.; Nishimura, M.; Kudo, R.; Matsumi, R.; Watanabe, K.; Ebara, Y. Chem.
Lett. 2001, 912–913; (b) Calvo, M. V.; Plou, F. J.; Ballesteros, A. Biocatal.
Biotransform. 1996, 13, 271–285.
4. In the biochemical literature, the attack of the nucleophile [OHÀ] at sulfur
during enzymatic sulfate ester hydrolysis is occasionally described as ‘inverting’
sulfatase activity. Although this may be formally correct, the sulfate formed is
non-chiral and hence this stereochemical annotation has no meaning and is
rather misleading, since the carbon atom of the chiral alcohol formed retains its
configuration.
5. Lukatela, G.; Krauss, N.; Theis, K.; Selmer, T.; Gieselmann, V.; von Figura, K.;
Saenger, W. Biochemistry 1998, 37, 3654–3664.
26. Theil, F. Tetrahedron 2000, 56, 2905–2919.
27. (a) Guo, Z.-W.; Sih, C. J. J. Am. Chem. Soc. 1989, 111, 6836–6841; (b) Itoh, T.;
Ohira, E.; Takagi, Y.; Nishiyama, S.; Nakamura, K. Bull. Chem. Soc. Jpn. 1991, 64,
624–627; (c) Bamann, E.; Laeverenz, P. Ber. Dtsch. Chem. Ges. 1930, 63, 394–
404.
6. (a) Dodgson, K. S.; White, G. F.; Fitzgerald, J. W.. In Sulfatases of Microbial Origin;
CRC Press: Boca Raton, 1982; 2 Vols., (b) Shaw, D. J.; Dodgson, K. S.; White, G. F.
Biochem. J. 1980, 187, 181–190; (c) Bartholomew, B.; Dodgson, K. S.; Matcham,
G. W. J.; Shaw, D. J.; White, G. F. Biochem. J. 1977, 165, 575–580; (d) Fitzgerald, J.
W.; Dodgson, K. S.; Matcham, G. W. J. Biochem. J. 1975, 149, 477–480; (e)
Matcham, G. W. J.; Bartholomew, B.; Dodgson, K. S.; Fitzgerald, J. W.; Payne, W.
J. FEMS Microbiol. Lett. 1977, 1, 197–199.
28. (a) Bordusa, F. Chem. Rev. 2002, 102, 4817–4867; (b) Bornscheuer, U. T. Curr.
Opin. Biotechnol. 2002, 13, 543–547; (c) Carrea, G.; Riva, S. Angew. Chem., Int. Ed.
2000, 39, 2226–2254; (d) Faber, K.; Ottolina, G.; Riva, S. Biocatalysis 1993, 8,
91–132; (e) Carrea, G.; Ottolina, G.; Riva, S. Trends Biotechnol. 1995, 13, 63–70.
29. (a) Watanabe, K.; Ueji, S. Biotechnol. Lett. 2000, 22, 599–603; (b) Watanabe, K.;
Ueji, S. J. Chem. Soc., Perkin Trans. 1 2001, 1386–1390.
7. Pogorevc, M.; Faber, K. Appl. Environ. Microbiol. 2003, 69, 2810–2815.
8. In short, the acid-catalysed hydrolysis is promoted by the good leaving group
HSO4À, which is the anion of the strong acid H2SO4, whereas base-induced
30. Nishigaki, T.; Yasufuku, Y.; Murakami, S.; Ebara, Y.; Ueji, S. Bull. Chem. Soc. Jpn.
2008, 81, 617–622.
2À
hydrolysis is severely impeded by the bad leaving-group capabilities SO4
,
À
which is the anion of the weak acid HSO4
.
31. (a) Guanti, G.; Banfi, L.; Powles, K.; Rasparini, M.; Scolastico, C.; Fossati, N.
Tetrahedron: Asymmetry 2001, 12, 271–277; (b) Zhu, J.; You, L.; Zhao, S. X.;
White, B.; Chen, J. G.; Skonezny, P. M. Tetrahedron Lett. 2002, 43, 7585–7587.
32. Pogorevc, M.; Strauss, U. T.; Riermeier, T.; Faber, K. Tetrahedron: Asymmetry
2002, 13, 1443–1447.
33. (a) Straathof, A. J. J.; Jongejan, J. A. Enzyme Microb. Technol. 1997, 21, 559–571;
(b) Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104,
7294–7299.
34. Cyclohexane, diisopropylether, methyl-tert-butyl ether, n-hexane, toluene,
dichloromethane, trichloromethane, isoamylalcohol.
35. Wallner, S. R.; Pogorevc, M.; Trauthwein, H.; Faber, K. Eng. Life Sci. 2004, 4, 512–
516.
9. Wallner, S. R.; Nestl, B. M.; Faber, K. Tetrahedron 2005, 61, 1517–1521.
10. (a) Wallner, S. R.; Nestl, B. M.; Faber, K. Org. Lett. 2004, 6, 5009–5010; (b)
Wallner, S. R.; Nestl, B. M.; Faber, K. Org. Biomol. Chem. 2005, 3, 2652–2656.
11. Gadler, P.; Faber, K. Eur. J. Org. Chem. 2007, 5527–5530.
12. Wallner, S. R.; Bauer, M.; Würdemann, C.; Wecker, P.; Glöckner, F. O.; Faber, K.
Angew. Chem., Int. Ed. 2005, 44, 6381–6384.
13. (a) Green, L. S.; Grossman, A. R. J. Bacteriol. 1988, 170, 583–587; (b) Jeanjean, R.;
Broda, E. Arch. Microbiol. 1977, 114, 19–23.
14. Laudenbach, D. E.; Grossman, A. R. J. Bacteriol. 1991, 173, 2739–2750.
15. For phylogenetic relationships see: Golden, S. S.; Nalty, M. S.; Cho, D.-S. C. J.
16. Barton, J. W.; Kuritz, T.; O’Connor, L. E.; Ma, C. Y.; Maskarinec, M. P.; Davison, B.
H. Appl. Microbiol. Biotechnol. 2004, 65, 330–335.
17. Havel, J.; Weuster-Botz, D. Eng. Life Sci. 2006, 175–179.
18. Hölsch, K.; Havel, J.; Haslbeck, M.; Weuster-Botz, D. Appl. Environ. Microbiol.
36. Pogorevc, M.; Faber, K. Tetrahedron: Asymmetry 2002, 13, 1435–1441.
37. Franco-Lara, E.; Havel, J.; Peterat, F.; Weuster-Botz, D. Biotechnol. Bioeng. 2006,
95, 1177–1187.
38. Allen, M. M. J. Phycol. 1968, 4, 1–4.
39. Rippka, R.; Coursin, T.; Hess, W. R.; Lichtle, C.; Scanlan, D. J.; Palinska, K. A.;
Iteman, I.; Partensky, F.; Houmard, J.; Herdman, M. Int. J. Syst. Evol. Microbiol.
2000, 50, 1833–1847.
19. Friedrich, C. G.; Quentmeier, A.; Bardischewsky, F.; Rother, D.; Kraft, R.; Kostka,
S.; Prinz, H. J. Bacteriol. 2000, 182, 4677–4687.