10.1002/adsc.201701484
Advanced Synthesis & Catalysis
2013, 42, 902–923; e) X. Jiang, R. Wang, Chem. Rev.
Luo, L.-Z. Gong, Org. Lett. 2010, 12, 2266–2269; f) J.
Brioche, T. Courant, L. Alcaraz, M. Stocks, M. Furber,
J. Zhu, G. Masson, Adv. Synth. Catal. 2014, 356, 1719–
1724.
2013, 113, 5515–5546; f) J. S. Bello Forero, J. Jones
Junior, F. M. da Silva, Curr. Org. Chem. 2016, 13,
157–175. See also: g) T. Akiyama, H. Morita, K.
Fuchibe, J. Am. Chem. Soc. 2006, 128, 13070–13071;
h) C. Min, N. Mittal, D. X. Sun, D. Seidel, Angew.
Chem. Int. Ed. 2013, 52, 14084–14088; Angew. Chem.
2013, 155, 14334-14338; i) C. Min, C.-T. Lin, D.
Seidel, Angew. Chem. Int. Ed. 2015, 54, 6608–6612;
Angew. Chem. 2015, 127, 6708-6712; j) J. Yu, H.-J.
Jiang, Y. Zhou, S.-W. Luo, L.-Z. Gong, Angew. Chem.
Int. Ed. 2015, 54, 11209–11213; Angew. Chem. 2015,
127, 11361-11365; k) C. Min, D. Seidel, Chem. Eur. J.
2016, 22, 10817–10820; l) H. Xu, S. J. Zuend, M. G.
Woll, Y. Tao, E. N. Jacobsen, Science 2010, 327, 986-
990; m) L. Jarrige, F. Blanchard, G. Masson, Angew.
Chem. Int. Ed. 2017, 56, 10573-10576; Angew. Chem.
2017, 129, 10709-10712; n) C. Luo, Y. Huang, J. Am.
Chem. Soc. 2013, 135, 8193-8196; o) J. Calleja, A. B.
González-Pérez, Á. R. de Lera, R. Álvarez, F. J.
Fañanás, F. Rodríguez, Chem. Sci. 2014, 5, 996-1007.
[11] F. Giacalone, M. Gruttadauria, P. Agrigento, R. Noto,
Chem. Soc. Rev. 2012, 41, 2406–2447.
[12] Organocatalytic examples at <100 p.p.m. catalyst
loading: a) W. Xu, M. Arieno, H. Löw, K. Huang, X.
Xie, T. Cruchter, Q. Ma, J. Xi, B. Huang, O. Wiest, L.
Gong, E. Meggers, J. Am. Chem. Soc. 2016, 138, 8774–
8780; b) S. Y. Park, J.-W. Lee, C. E. Song, Nat.
Commun. 2015, 6:7512; c) Z. Zhang, H. Y. Bae, J.
Guin, C. Rabalakos, M. van Gemmeren, M. Leutzsch,
M. Klussmann, B. List, Nat. Commun. 2016, 7:12478;
examples of phosphoric acid catalysis at 100 p.p.m.
loading: d) M. Rueping, A. P. Antonchick, T.
Theissmann, Angew. Chem. Int. Ed. 2006, 45, 6751-
6755; Angew. Chem. 2006, 118, 6903-6907; e) S. Liao,
M. Leutzsch, M. R. Monaco, B. List, J. Am. Chem. Soc.
2016, 138, 5230-5233. For a high pressure approach
towards low loading phosphoric acid catalysis enabling
200-500 p.p.m. loading: f) M. Biedrzycki, A. Kasztelan,
P. Kwiatkowski, ChemCatChem 2017, 9, 2453-2456;
recent examples of other organocatalytic processes
proceeding at low (but >100 p.p.m.) loadings, see: g) X.
Zhou, Y. Wu, L. Deng, J. Am. Chem. Soc. 2016, 138,
12297-12302; h) J.-L. Li, L. Fu, J. Wu, K.-C. Yang, Q.-
Z. Li, X.-J. Gou, C. Peng, B. Han, X.-D. Shen, Chem.
Commun. 2017, 53, 6875-6878; i) M. Rombola, C. S.
Sumaria, T. D. Montgomery, V. H. Rawal, J. Am.
Chem. Soc. 2017, 139, 5297-5300; j) H. Y. Bae, C. E.
Song, ACS Catal. 2015, 5, 3613-3619; k) J. V. Alegre-
Requena, E. Marqués-López, R. P. Herrera, Adv. Synth.
Catal. 2016, 358, 1801-1806; l) B. M. Paz, L. Klier, L.
Næsborg, V. H. Lauridsen, F. Jensen, K. A. Jørgensen,
Chem. Eur. J. 2016, 22, 16810-16818; m) M. Blümel, P.
Chauhan, R. Hahn, G. Raabe, D. Enders, Org. Lett.
2014, 16, 6012-6015.
[7] a) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew.
Chem. Int. Ed. 2004, 43, 1566-1568; Angew. Chem.
2004, 116, 1592-1594; b) D. Uraguchi, M. Terada, J.
Am. Chem. Soc. 2004, 126, 5356-5357. Reviews: c) D.
Kampen, C. M. Reisinger, B. List, Top. Curr. Chem.
2010, 291, 395–456; d) T. Akiyama, Chem. Rev. 2007,
107, 5744–5758; e) M. Terada, Synthesis 2010, 1929–
1982; f) J. Yu, F. Shi, L.-Z. Gong, Acc. Chem. Res.
2011, 44, 1156–1171; g) A. Zamfir, S. Schenker, M.
Freund, S. B. Tsogoeva, Org. Biomol. Chem. 2010, 8,
5262–5276; h) D. Parmar, E. Sugiono, S. Raja, M.
Rueping, Chem. Rev. 2014, 114, 9047–9153.
[8] a) A. R. Katritzky, S. Rachwal, B. Rachwal,
Tetrahedron 1996, 52, 15031–15070; b) V. Sridharan,
P. A. Suryavanshi, J. C. Menéndez, Chem. Rev. 2011,
111, 7157–7259.
[9] For
proline
catalyzed
reactions
on
ferrocenecarbaldehyde and imine derivatives, see: a)
A.-N. Alba, P. Gómez-Sal, R. Rios, A. Moyano,
Tetrahedron: Asymm. 2009, 20, 1314–1318; b) G.
Valero, A.-N. Balaguer, A. Moyano, R. Rios,
Tetrahedron Lett. 2008, 49, 6559-6562; for asymmetric
diethylzinc addition, see: c) K. Dikova, M. Kamenova-
Nacheva, K. Kostova, V. Dimitrov, Bulg. Chem.
Commun. 2014, 46, 33–38; for an asymmetric addition
to β-ferrocenyl nitroalkene: d) R. S. Tukhvatshin, A. S.
Kucherenko, Y. V. Nelyubina, S. G. Zlotin, ACS Catal.
2017, 7, 2981–2989; for other asymmetric reactions,
see for example: e) A. Patti, S. Pedotti, Tetrahedron:
Asymm. 2006, 17, 1824-1830; f) P. Tisovský, M.
Mečiarová, R. Šebesta, Tetrahedron: Asymm. 2011, 22,
536-540.
[13] a) D. Bello, R. Ramón, R. Lavilla, Curr. Org. Chem.
2010, 14, 332–356; b) O. Jiménez, G. de la Rosa, R.
Lavilla, Angew. Chem. Int. Ed. 2005, 44, 6521-6525;
Angew. Chem. 2005, 117, 6679-6683; c) N. Isambert,
M. Cruz, M. J. Arévalo, E. Gómez, R. Lavilla, Org.
Lett. 2007, 9, 4199-4202; d) G. Dagousset, F. Drouet,
G. Masson, J. Zhu, Org. Lett. 2009, 11, 5546-5549.
[14] While it was not possible to determine the
enantiomeric excess of adducts 4’b, the two
diastereoisomers of 4’c were formed with very high
enantioselectivities (comparable to the corresponding
cycloadduct 4c). This result suggests that the same
intermediate (A) is involved in both processes giving
products 4 and 4’. Thus, these formal [4 + 2]
cycloaddition reactions likely follow
pathway.
a two-step
[10] a) H. Liu, G. Dagousset, G. Masson, P. Retailleau, J.
Zhu, J. Am. Chem. Soc. 2009, 131, 4598–4599; b) G.
Dagousset, J. Zhu, G. Masson, J. Am. Chem. Soc. 2011,
133, 14804–14813; c) J.-H. Lin, G. Zong, R.-B. Du, J.-
C. Xiao, S. Liu, Chem. Commun. 2012, 48, 7738–7740;
d) D. Huang, F. Xu, T. Chen, Y. Wang, X. Lin, RSC
Adv. 2013, 3, 573–578; e) C. Wang, Z.-Y. Han, H.-W
[15] See the Supporting Information. CCDC no 1559241
contains the crystallographic data of 4b. These data can
be obtained free of charge from The Cambridge
Crystallographic Data Centre.
7
This article is protected by copyright. All rights reserved.