ACS Catalysis
Letter
Notes
fragments gives the higher catalytic potencies approaching those
of enzymes.
The authors declare no competing financial interest.
The presence of either Na+ or basic amino acids associated
with phosphates of DNA and RNA chains had apparently little
effect on the turnover number as long as nucleotides remained
neutralized. We have, therefore, tested if any conformational
changes take place in DNA/RNA upon the binding of amino
acids. We found that (i) all the DNA/RNA salts remained in
B-form according to CD spectra, while RNA had a little blue
shift; (ii) DNA•Lys, DNA•Arg increased fluorescence emission
and showed little sensitivity to solvent polarity when dissolved
ACKNOWLEDGMENTS
■
This work was supported by the National Basic Research Program
of China (973 program: 2013CB733600, 2012CB725200), the
National Nature Science Foundation of China (21390202), and
the National High-Tech R&D Program of China (2014AA022101,
2014AA021904). The support provided by China Scholar-
ship Council (No. +2011688018) during a visit to Aarhus is
acknowledged.
1
in 55% ethanol or water; (iii) H NMR and CD spectra of
DNA•NaOH and DNA•Lys verified that Na+ and Lys indeed
interacted electrostatically with phosphate groups (see details in
Spectrum Study in the Supporting Information).
REFERENCES
■
(1) (a) Kruger, K.; Grabowski, P. J.; Zaug, A. J.; Sands, J.;
Gottschling, D. E.; Cech, T. R. Cell 1982, 31, 147−157. (b) Guerrier-
Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. Cell 1983,
35, 849−857.
Combining the current knowledge with the generally
accepted Knoevenagel condensation mechanisms,14−19,28
we can propose the following pathway (Scheme 1). First, a
ternary complex A•E•B is formed via a fast random binding
or according to the ordered steady state mechanism (both
described by eq 1). The substrates are located very closely and
partially hinder the binding of each other to catalyst E (because
KmA > KsA). At the second step, a proton is transferred from
ethyl cyanoacetate to the catalyst (e.g., DNA/RNA-salt) and
enolate ion is formed. Then another substrate benzaldehyde
accepts the proton and simultaneously becomes connected
to enolate ion with formation of a carbon−carbon bond.
Finally, the Knoevenagel adduct is released from the catalyst.
An alternative kinetic scheme (also compliant with eq 1)
suggests a temporary binding of the active hydrogen compound
(B) to the catalyst followed by abstraction of proton. Finally,
a direct collision with benzaldehyde (with a very weak or no
complex formation) leads to the condensation. A comparison
of kinetics for simple and complex catalysts (planned in the
future) might shed some light on this subject.
In conclusion, we have demonstrated that RNA/DNA
oligonucleotides can effectively catalyze the Knoevenagel
condensation reaction at physiological pH. The best achieved
efficiency was comparable to the enzyme PPL. Velocity of
catalysis was positively correlated to the content of GC
nucleosides. A long strand of 700 bp DNA•NaOH exhibited
higher turnover number than 50 bp DNA•NaOH, DNA•Lys,
and Lys•HCl, which stresses the importance of higher 3D-
organization. The deoxyribo- or ribophosphate backbone was
not directly involved in catalysis. Quantitative characterization
of kinetics elucidated general similarities of DNA, RNA, lipase
PPL, and Lys in the substrate binding mechanisms (compliant
with general equation of a bisubstrate reaction). This work
demonstrated a novel group of catalysts and illustrated possible
mechanisms of catalysis relevant to evolutionary biochemistry
of simple molecules.
(2) Tarasow, T. M.; Tarasow, S. L.; Eaton, B. E. Nature 1997, 389,
54−57.
(3) (a) Seelig, B.; Jaschke, A. Tetrahedron Lett. 1997, 38, 7729−7732.
̈
(b) Seelig, B.; Jaschke, A. Chem. Biol. 1999, 6, 167−176. (c) Seelig, B.;
̈
Jaschke, A. Bioconjugate Chem. 1999, 10, 371−378. (d) Seelig, B.;
Keiper, S.; Stuhlmann, F.; Jaschke, A. Angew. Chem., Int. Ed. 2000, 39,
̈
̈
4576−4579.
(4) Stuhlmann, F.; Jaschke, A. J. Am. Chem. Soc. 2002, 124, 3238−
̈
3244.
(5) Wombacher, R.; Jaschke, A. J. Am. Chem. Soc. 2008, 130, 8594-−
̈
8595.
(6) Helm, M.; Petermeier, M.; Ge, B.; Fiammengo, R.; Jaschke, A. J.
̈
Am. Chem. Soc. 2005, 127, 10492−10493.
(7) Sengle, G.; Eisenfuhr, A.; Arora, P. S.; Nowick, J. S.; Famulok, M.
̈
Chem. Biol. 2001, 8, 459−473.
(8) Chandra, M.; Silverman, S. K. J. Am. Chem. Soc. 2008, 130, 2936−
2937.
(9) Boersma, A. J.; Klijn, J. E.; Feringa, B. L.; Roelfes, G. J. Am. Chem.
Soc. 2008, 130, 11783−11790.
(10) (a) Park, S.; Sugiyama, H. Molecules 2012, 17, 12792−12803.
(b) Park, S.; Sugiyama, H. Angew. Chem., Int. Ed. 2010, 49, 3870−
3878.
(11) Sun, G.; Fan, J.; Wang, Z.; Li, Y. Synlett. 2008, 16, 2491−2494.
(12) Fan, J.; Sun, G.; Wan, C.; Wang, Z.; Li, Y. Chem. Commun. 2008,
32, 3792−3794.
(13) De Rosa, M.; Di Marino, S.; D’Ursi, A. M.; Strianese, M.;
Soriente, A. Tetrahedron 2012, 68, 3086−3091.
̀
(14) (a) Coquiere, D.; Feringa, B. L.; Roelfes, G. Angew. Chem., Int.
Ed. 2007, 46, 9308−9311. (b) Li, Y.; Wang, C.; Jia, G.; Lu, S.; Li, C.
Tetrahedron 2013, 69, 6585−6590. (c) Megens, R. P.; Roelfes, G.
Chem. Commun. 2012, 48, 6366−6368. (d) Roelfes, G. Org. Biomol.
Chem. 2010, 817, 3868−3873.
(15) Izquierdo, C.; Luis-Barrera, J.; Fraile, A.; Aleman
Commun. 2014, 44, 10−14.
́
, J. Catal.
(16) Knoevenagel, E. Ber. Dtsch. Chem. Ges. 1894, 27, 2345−2346.
(17) Kuzemko, M. A.; Van Arnum, S. D.; Niemczyk, H. J. Org. Process
Res. Dev. 2007, 11, 470−476.
(18) Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. J. Comb. Chem. 2010, 12,
231−237.
ASSOCIATED CONTENT
* Supporting Information
■
(19) (a) Lai, Y. F.; Zheng, H.; Chai, S. J.; Zhang, P. F.; Chen, X. Z.
Green Chem. 2010, 12, 1917−1918. (b) Kapoor, M.; Gupta, M. N.
Process Biochem. 2012, 47, 555−569. (c) Liu, Z.-Q.; Liu, B.-K.; Wu, Q.;
Lin, X.-F. Tetrahedron 2011, 67, 9736−9740.
S
Details on DNA/RNA salt preparation, pH influence
assumption, the kinetic and spectral characterization data for
catalysts. This material is available free of charge via the
(20) Li, W.; Fedosov, S. N.; Tan, T.; Xu, X.; Guo, Z. Appl. Biochem.
Biotechnol. 2014, 173, 278−290.
(21) (a) Bigi, F.; Conforti, M. L.; Maggi, R.; Piccinno, A.; Sartori, G.
Green Chem. 2000, 2, 101−103. (b) Amantini, D.; Fringuelli, F.;
Piermatti, O.; Pizzo, F.; Vaccaro, L. Green Chem. 2001, 3, 229−232.
(22) (a) Janero, D. R. Free Radical Biol. Med. 1990, 9, 515−540.
(b) Esterbauer, H.; Schaur, R. J.; Zollner, H. Free Radical Biol. Med.
1991, 11, 81−128.
AUTHOR INFORMATION
■
Corresponding Authors
3299
dx.doi.org/10.1021/cs500882r | ACS Catal. 2014, 4, 3294−3300