H. Yoda et al. / Tetrahedron Letters 45 (2004) 4217–4220
4219
smoothly. Whereas treatment of 6 with ethyldi-
References and notes
ethylphosphonoacetate gave the separable mixture of
the two compounds 7a and 8 as mentioned above, we
were delighted to find that the use of 10 brought about,
in turn, the desired tricyclic lactone 11 as the single as
well as the sole product in 87% isolated yield (as the
anomer mixture) under the same reaction conditions.
This high stereoselective performance compared with
that of the analogous compound 6 would be attributed
simply to the steric demand of the tricyclic core.
1. (a) Zeng, L.; Ye, Q.; Oberlies, N. H.; Shi, G.; Gu, Z.-M.;
He, K.; McLaughlin, J. L. Nat. Prod. Rep. 1996, 13, 275;
ꢀ
ꢁ
(b) Cave, A.; Figadere, B.; Laurens, A.; Cortes, D. In
Progress in the Chemistry of Organic Natural Products;
Herz, W., Ed.; Springer: Wien, New York, 1997; Vol. 70,
p 81.
2. (a) Bauer, I.; Maranda, L.; Young, K. A.; Shimizu, Y.;
Huang, S. Tetrahedron Lett. 1995, 36, 709; (b) Sakai, R.;
Rinehart, K. L. J. Nat. Prod. 1995, 58, 773; (c) Wipf, P.;
Lim, S. J. Am. Chem. Soc. 1995, 117, 558.
With these results in hand, 11 was further transformed
into the desired bicyclic lactone 7b by the routine reac-
tion sequence of hydroxylation under acidic conditions,
reduction of the corresponding lactol with NaBH4 and
regioselective protection of the secondary hydroxyl
group with MOMClvia the TBS-ether. This was then
subjected to the reactions of oxidative cleavage after
hydrogenation, reduction again, and protection of the
3. (a) Matsuo, Y.; Suzuki, M.; Masuda, M. Chem. Lett.
1995, 1043; (b) Morte, M. Tetrahedron Lett. 1997, 38,
3137; (c) Koert, U. Angew. Chem., Int. Ed. Engl. 1995, 34,
298.
4. Faulkner, D. J. Nat. Prod. Rep. 1997, 14, 259.
5. Seki, T.; Satake, M.; Mackenzie, L.; Kaspar, H. F.;
Yasumoto, T. Tetrahedron Lett. 1995, 36, 7093.
6. (a) Boukouvalas, J.; Fortier, G.; Radu, I.-I. J. Org. Chem.
ꢀ
1998, 63, 916; (b) Fernandez de la Pradilla, R.; Montero,
C.; Priego, J.; Martınez-Cruz, L. A. J. Org. Chem. 1998,
primary alcohol with DPSCl, providing the cis-fused 7b,
ꢀ
26
D
½aꢀ +13.8° (c 1.03, MeOH). Then, 7b thus obtained was
63, 9612; (c) Capon, R. J.; Barrow, R. A.; Skene, C.;
Rochfort, S. Tetrahedron Lett. 1997, 38, 7609; (d) Capon,
R. J.; Barrow, R. A. J. Org. Chem. 1998, 63, 75; (e) Capon,
R. J.; Barrow, R. A.; Rochfort, S.; Jobling, M.; Skene, C.;
Lacey, E.; Gill, J. H.; Friedel, T.; Wadsworth, D.
Tetrahedron 1998, 54, 2227; (f) Wang, Z.-M.; Shen, M.
J. Org. Chem. 1998, 63, 1414; (g) Mori, Y.; Sawada, T.;
Furukawa, H. Tetrahedron Lett. 1999, 40, 731, and
references cited therein.
effected with vinylmagnesium bromide at low tempera-
ture to afford the labile hemiketal intermediate, which
was readily treated with NaBH4 in the presence of CeCl3
at )40 °C, leading to the corresponding vinyl alcohol 12,
27
½aꢀ )9.91° (c 0.54, MeOH), surprisingly with complete
D
stereoselectivity (determined by 13C NMR analysis). No
other stereoisomer was observed in this reaction.11 After
protection with MOMClof 12, the olefinic part was then
cleavaged via dihydroxylation to give the aldehyde,
which was successively subjected to reduction and
7. (a) Stevens, D. R.; Whiting, D. A. J. Chem. Soc., Perkin
Trans. 1 1992, 633; (b) Mitra, J.; Mitra, A. K. J. Chem.
Soc., Perkin Trans. 1 1992, 1285; (c) Maiti, G.; Adhikari,
S.; Roy, S. C. J. Chem. Soc., Perkin Trans. 1 1995, 927;
(d) Yoshida, S.-I.; Ogiku, T.; Ohmizu, H.; Iwasaki, T. J.
Org. Chem. 1997, 62, 1310; (e) Chen, I.-S.; Chen, J.-J.;
Duh, C.-Y.; Tsai, I.-L. Phytochemistry 1997, 45, 991; (f)
MOM-protection again, leading to the tetramethoxy-
27
D
methylether 13, ½aꢀ )15.9° (c 0.55, MeOH). Finally, 13
was effected by deprotection of DPS group with Bu4NF
and esterification with 2-naphthoic acid (the similar
framework of the naturalproduct, triolbatin B ( 3)) in
the presence of EDCI (1-ethyl-3-(3-dimethylaminoprop-
yl)carbodiimide hydrochloride) and DMAP,12 followed
by deprotection of the resulting tetramethoxymethyl
ꢀ
ꢀ
ꢀ
Garcia, C.; Martın, T.; Martın, V. S. J. Org. Chem. 2001,
66, 1420; (g) Chakraborty, T. K.; Das, S.; Raju, T. V.
J. Org. Chem. 2001, 66, 4091; (h) Gadikota, R. R.;
Callam, C. S.; Lowary, T. L. J. Org. Chem. 2001, 66,
9046.
ether to accomplish the synthesis of trilobatin B deriv-
8. (a) Yoda, H.; Kimura, K.; Takabe, K. Synlett 2001, 400;
(b) Yoda, H.; Maruyama, K.; Takabe, K. Tetrahedron:
Asymmetry 2001, 12, 1403; (c) Yoda, H.; Mizutani, M.;
Takabe, K. Tetrahedron Lett. 1999, 40, 4701; (d) Yoda,
H.; Nakaseko, Y.; Takabe, K. Synlett 2002, 1532.
9. (a) Martini, U.; Zapp, J.; Becker, H. Phytochemistry 1998,
49, 1139; (b) Martini, U.; Zapp, J.; Becker, H. Phyto-
chemistry 1998, 47, 89.
10. (a) Mereyala, H. B.; Gadikota, R. R. Tetrahedron:
Asymmetry 2000, 11, 743; (b) Sun, K. M.; Dawe, R. D.;
Fraser-Reid, B. Carbohydrate Res. 1987, 171, 35,
The obtained stereoselectivity would be attributed
to the presence of the 2,3-disubstituted dibenzyloxyl
groups.
26
D
ative 14, ½aꢀ +32.3° (c 0.085, MeOH).
In summary, this work constitutes the first asymmetric
synthesis of the tetrahydrofuran segment of the natural
lignan product, trilobatin B, based on a stereoselectively
tandem reaction sequence via Horner–Emmons reac-
tion, stereoselective Michael addition, and intramolec-
ular cyclization and will be widely applicable to the
synthesis of other chiraltetrahydrofuran-containing
naturalproducts.
Acknowledgements
11. The absolute configuration of the newly created stereo-
genic center of 12 was easily characterized to be R after
derivatization to the corresponding d-lactone derivative
through a five-step sequence as shown below:
This work was supported in part by a Grant-in-Aid (no
15550031) for Scientific Research from the Japan Soci-
ety for the Promotion of Science.
The observed vicinalcoupling constants of Ja;b and Ja;c were
Hb
1) Ac O
2
OH
H
Hc
Ha
Hb
CHO
OAc
O
O
H
O
SPDO
O
1) K CO
2
2) OsO
3
4
SPDO
MOMO
SPDO
MOMO
SPDO
MOMO
OH
Ha
O
O
MOMO
OH
2) MnO
2
3)NaIO
OAc
OH
O
4
Hc
, J =2.4, 4.8 Hz
O
12
15
16
J
a,b a,c