Chikwana et al.
697
(14) Sato, K.; Robbins, J. Endocrinology 1981, 109, 844. PMID:
6790265.
(15) Miller, W. H.; Roblin, R. O.; Astwood, E. B. J. Am. Chem.
Soc. 1945, 67, 2201. doi:10.1021/ja01228a043.
(16) Doniach, I. Monogr. Neoplast. Dis. Var. Sites 1970, 6, 73.
PMID:4950336.
(17) Lindsay, R. H.; Hulsey, B. S.; Aboul-Enein, H. Y. Biochem.
Pharmacol. 1975, 24, 463. doi:10.1016/0006-2952(75)
90129-X. PMID:46147.
(18) Kabadi, U.; Cech, R. Thyroidology 1994, 6, 87. PMID:
7545000.
(19) Oren, R.; Dotan, I.; Papa, M.; Marravi, Y.; Aeed, H.; Barg,
J.; Zeidel, L.; Bruck, R.; Halpern, Z. Hepatology 1996, 24,
419. doi:10.1002/hep.510240221. PMID:8690414.
(20) Darkwa, J.; Olojo, R.; Chikwana, E.; Simoyi, R. H. J. Phys.
Chem. A 2004, 108, 5576. doi:10.1021/jp049748k.
(21) Chikwana, E.; Otoikhian, A.; Simoyi, R. H. J. Phys. Chem.
A 2004, 108, 11591. doi:10.1021/jp045897r.
(22) Oliveira, A. P.; Faria, R. B. J. Am. Chem. Soc. 2005, 127,
18022. doi:10.1021/ja0570537. PMID:16366551.
(23) Chanakira, A.; Chikwana, E.; Peyton, D.; Simoyi, R. Can. J.
Chem. 2006, 84, 49. doi:10.1139/v05-263.
date concentrations, resulting in a monotonic formation of
iodine. The transient iodine formation traces (Figs. 3 and
4b) were more difficult to reproduce with this abbreviated
mechanism. It was easier to fit the initial formation of io-
dine but much more difficult to fit its consumption, even
though the model could easily reproduce the trivial iodine
consumption traces shown in Fig. 7a. The inability to cor-
rectly simulate Figs. 3 and 4b lay in our inability to cor-
rectly ascribe the correct activity of aqueous iodine in these
highly acidic solutions. Literature does not contain reliable
data on these solutions, especially when spiked with iodide.
Conclusion
Our short study has shown that iodine oxidizes the simple
biologically important thioether, methionine, to just the sulf-
oxide. Organosulfur compounds are the most effective goi-
trogenics available, and their reaction rate and mechanism
with iodine would be a significant physiological interaction.
Acknowledgements
This work was supported by grant number CHE 0614924
from the National Science Foundation.
(24) Liebhafsky, H. A.; Roe, G. M. Int. J. Chem. Kinet. 1979, 11,
693. doi:10.1002/kin.550110703.
(25) Kolaranic, L.; Schmitz, G. J. Chem. Soc., Faraday Trans.
1992, 88, 2343. doi:10.1039/ft9928802343.
(26) Schmitz, G. Phys. Chem. Chem. Phys. 1999, 1, 1909. doi:10.
1039/a809291e.
(27) Schmitz, G. Phys. Chem. Chem. Phys. 2000, 2, 4041. doi:10.
1039/b003606o.
References
(1) Boers, G. H.; Smals, A. G.; Trihbels, J. F.; Leermakers, A.
I.; Kloppenborg, P. W. J. Clin. Invest. 1983, 72, 1971.
doi:10.1172/JCI111161. PMID:6643682.
(2) Epner, D. E. J. Am. Coll. Nutr. 2001, 20, 443S. PMID:
11603655.
(3) Finkelstein, J. D.; Martin, J. J. J. Biol. Chem. 1986, 261,
1582. PMID:3080429.
(4) Yang, Z.; Wang, J.; Yoshioka, T.; Li, B.; Lu, Q.; Li, S.; Sun,
X.; Tan, Y.; Yagi, S.; Frenkel, E. P.; Hoffman, R. M. Clin.
Cancer Res. 2004, 10, 2131. doi:10.1158/1078-0432.CCR-
03-0068. PMID:15041734.
(5) Wilcken, D. E.; Wilcken, B. J. Clin. Invest. 1976, 57, 1079.
doi:10.1172/JCI108350. PMID:947949.
(6) Wasan, K. M.; Cassidy, S. M.; Kennedy, A. L.; Peteherych,
K. D. Atherosclerosis: Experimental Methods and Protocols;
Humana Press: Clifton, NJ, 1995; pp 27–35.
(7) Zieman, S. J.; Melenovsky, V.; Kass, D. A. Arterioscler.
Thromb. Vasc. Biol. 2005, 25, 932. doi:10.1161/01.ATV.
0000160548.78317.29. PMID:15731494.
(8) Moskovitz, J.; Berlett, B. S.; Poston, J. M.; Stadtman, E. R.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 9585. doi:10.1073/
pnas.94.18.9585. PMID:9275166.
(9) Stadtman, E. R.; Moskovitz, J.; Berlett, B. S.; Levine, R. L.
Mol. Cell. Biochem. 2002, 234–235, 3. doi:10.1023/
A:1015916831583.
(10) Moskovitz, J.; Berlett, B. S.; Poston, J. M.; Stadtman, E. R.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 9585. doi:10.1073/
pnas.94.18.9585. PMID:9275166.
(11) Carvalho, D. P.; Ferreira, A. C. F.; Coelho, S. M.; Moraes, J.
M.; Camacho, M. A. S.; Rosenthal, D. Braz. J. Med. Biol.
Res. 2000, 33, 355. PMID:10719389.
(12) Levine, R.; Mosoni, L.; Berlett, B.; Stadtman, E. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 15036. doi:10.1073/pnas.93.26.
15036. PMID:8986759.
(28) Mambo, E.; Simoyi, R. H. J. Phys. Chem. 1993, 97, 13662.
doi:10.1021/j100153a039.
(29) Xie, Y.; McDonald, M. R.; Margerum, D. W. Inorg. Chem.
1999, 38, 3938. doi:10.1021/ic9807442.
(30) Tiktonova, L. P.; Kovalenko, A. S.; Labunskaya, I. F.; Ivash-
chenko, T. S. Teoreticheskaya I Eksperimentalnaya Khimiya
1991, 27, 737.
(31) Lalitha, P. V. N.; Ramaswamy, R. Collect. Czech. Chem.
Commun. 1992, 57, 2235. doi:10.1135/cccc19922235.
(32) Agreda B, J. A.; Field, R. J.; Lyons, N. J. J. Phys. Chem. A
2000, 104, 5269. doi:10.1021/jp000271w.
(33) Eigen, M.; Kustin, K. J. Am. Chem. Soc. 1962, 84, 1355.
doi:10.1021/ja00867a005.
(34) Simoyi, R. H.; Manyonda, M.; Masere, J.; Mtambo, M.;
Ncube, I.; Patel, H.; Epstein, I. R.; Kustin, K. J. Phys.
Chem. 1991, 95, 770. doi:10.1021/j100155a052.
(35) Simoyi, R. H.; Epstein, I. R.; Kustin, K. J. Phys. Chem.
1989, 93, 2792. doi:10.1021/j100344a019.
(36) Rabai, G.; Beck, M. T. J. Chem. Soc. Dalton Trans. 1985,
1669. doi:10.1039/dt9850001669.
(37) Turner, D. H.; Flynn, G. W.; Sutin, N.; Beitz, J. V. J. Am.
Chem. Soc. 1972, 94, 1554. doi:10.1021/ja00760a020.
(38) Ruasse, M. F.; Aubard, J.; Galland, B.; Adenir, A. J. Phys.
Chem. 1986, 90, 4382. doi:10.1021/j100409a034.
(39) Kraus, C. A.; Parker, H. C. J. Am. Chem. Soc. 1922, 44,
2429. doi:10.1021/ja01432a011.
(40) Naidich, S.; Ricci, J. E. J. Am. Chem. Soc. 1939, 61, 3268.
doi:10.1021/ja01267a010.
(41) Ianni, J. C. Kintecus, Windows Version 3.95, 2008, http://
(13) Meenakshisundaram, S.; Vinothini, R. Croat. Chem. Acta
2003, 76, 75.
Published by NRC Research Press