T. Tamai et al.
Bull. Chem. Soc. Jpn., 77, No. 6 (2004) 1247
2
Y. Takita, H. Wakamatsu, M. Tokumaru, H. Nishiguchi, M.
position by 10% MgF2–MgO at 573 K and CCl2F2 decomposi-
tion by 5% MgF2–MgO at 623 K. Those conditions of low re-
action temperature and weak acidity of the sample would cause
incomplete dissociation of C–F bonds to form CCl2F inter-
mediates, which would combine with Cl to form CCl3F. In gen-
eral, decomposition of CCl3F is easier than that of CCl2F2 due
to lower binding energy of both C–Cl and C–F bonding; then
further halogen exchange to form CCl4 would easily occur.
This would be the reason for small amount of CCl3F formation
and exclusive formation of CCl4 as final product, if there are
sufficient active sites. The equation for selective fluorine ad-
sorption and formation of CCl3F can be described as Eq. 3.
The lack of CClF3 as a product definitely shows that dispropor-
tionation of CCl2F2 to form CCl3F and CClF3 does not occur.
Ito, and T. Ishihara, Appl. Catal., A, 194, 55 (2000).
Y. Takita, M. Ninomiya, R. Matsuzaki, H. Wakamatsu, H.
Nishiguchi, and T. Ishihara, Phys. Chem. Chem. Phys., 1, 2367
3
(1999).
4
(2001).
5
X. Deng, Z. Ma, Y. Yue, and Z. GaO, J. Catal., 204, 200
M. Tajima, M. Niwa, Y. Fujii, Y. Koinuma, R. Aizawa, S.
Kushiyama, S. Kobayashi, K. Mizuno, and H. Ohuchi, Appl.
Catal., B, 9, 167 (1996).
6
7
8
S. Karmakar and H. L. Greene, J. Catal., 151, 394 (1995).
S. Karmakar and H. L. Greene, J. Catal., 148, 524 (1994).
X. Fu, W. A. Zeltner, Q. Yang, and M. A. Anderson, J.
Catal., 168, 482 (1997).
9
B. M. Weckhuysen, M. P. Rosynek, and J. H. Lunsford,
Phys. Chem. Chem. Phys., 1, 3157 (1999).
10 B. M. Weckhuysen, G. Mestl, M. P. Rosynek, T. R.
Klawietz, J. F. Haw, and J. H. Lunsford, J. Phys. Chem. B, 102,
3773 (1998).
11 K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S.
Decker, Y. Jiang, I. Lagadic, and D. Zhang, J. Phys. Chem., 100,
12142 (1996).
12 Y. Jiang, S. Decker, C. Mohs, and K. J. Klabunde, J. Catal.,
180, 24 (1998).
13 K. J. Klabunde, A. Khaleel, and D. Park, High Temp. Mater.
Sci., 33, 99 (1995).
3CCl2F2(g) þ 2MgO(s) ! CO2(g) þ 2CCl3F(g) þ 2MgF2(s)
ꢀH0 ¼ ꢁ532 kJ molꢁ1
:
ð3Þ
The mechanism of CCl2F2 decomposition and the pathway
for product formation should become independent of reaction
temperature between 623 and 773 K and the degree of fluorina-
tion higher than 5%, since in all such cases the reactivity to
CCl4 was quite low. Decomposition of CCl4 and fixation of
chlorine can be attained by using other alkaline earth metal ox-
ides such as CaO, SrO, or BaO. Thus, formation of CCl4 as
product is not a crucial problem for practical application of this
method. Combination of the systems using partially fluorinated
MgO and using other alkaline earth metal oxides can allow both
chlorine and fluorine of CCl2F2 to be separately fixed.
14 S. P. Decker, J. S. Klabunde, A. Khaleel, and K. J.
Klabunde, Environ. Sci. Technol., 36, 762 (2002).
15 O. Koper, I. Lagadic, and K. J. Klabunde, Chem. Mater., 9,
838 (1997).
16 O. Koper, E. A. Wovchko, J. A. Glass, J. T. Yates, and K. J.
Klabunde, Langmuir, 11, 2054 (1995).
Conclusions
Partially fluorinated magnesium oxides (MgF2–MgO) were
found to be highly reactive in CCl2F2 decomposition with se-
lective fluorine absorption as MgF2. The reactivity was related
to the degree of fluorination of MgO. The amount and strength
of acid sites on MgF2–MgO analyzed by NH3-TPD drastically
changed depending on the degree of fluorination. Pyridine ad-
sorption experiments using FT-IR to characterize acid sites
for MgO and partially fluorinated MgO indicated that partially
fluorinated MgO had Lewis acid sites and no Brꢁnsted acid
sites. By increasing the degree of fluorination, Lewis acidity be-
came slightly stronger, as suggested by slight shift in the ab-
sorption bands by ring vibration modes 8a and 19b of pyridine.
Thus, the initial stage of CCl2F2 decomposition was considered
to occur on Lewis acid sites to dissociate C–F bonds. Mg–F
bonding was subsequently formed after the dissociation of C–
F in CCl2F2 and highly electronegative fluorine atoms generat-
ed coordinatively unsaturated Mg sites at their surroundings.
As a result, Lewis acid sites are also generated by partially
fluorination of MgO by CCl2F2, so CCl2F2 decomposition with
fluorine fixation proceeds at high efficiency. CCl4 decomposi-
tion by MgO and partially fluorinated MgO proceeded very
slowly. This low reactivity to CCl4 was considered to be a dom-
inant factor for selective MgF2 formation in CCl2F2 decompo-
sition by MgO and MgF2–MgO.
17 J. Burdenic and R. H. Crabtree, Science, 27, 340 (1996).
18 M. C. Lee and W. Choi, Environ. Sci. Technol., 36, 1367
(2002).
19 D. P. Dufaux and M. R. Zachariah, Environ. Sci. Technol.,
3, 2223 (1997).
20 T. Tamai, K. Inazu, and K. Aika, Chem. Lett., 32, 436
(2003).
21 A. Hess and E. Kemnitz, J. Catal., 149, 449 (1994).
22 A. Alonso, A. Morato, F. Medina, Y. Cesteros, P. Salagre,
and J. E. Sueiras, Appl. Catal., B, 40, 259 (2003).
23 A. Hess, E. Kemnitz, A. Lippitz, W. E. S. Unger, and D. H.
Menz, J. Catal., 148, 270 (1994).
24 M. Shimbo, Z. Nakagawa, Y. Ohya, and K. Hamano, J.
Ceram. Soc. Jpn., 97, 640 (1989).
25 H. Itoh, S. Utanapanya, J. V. Stark, K. J. Klabunde, and J.
R. Shulup, Chem. Mater., 5, 71 (1993).
´
´
26 T. Lopez and R. Gomez, J. Sol-Gel Sci. Technol., 13, 1043
(1998).
27 A. H. Kline and J. Turkevich, J. Chem. Phys., 12, 300
(1944).
28 G. Connell and J. A. Dumesic, J. Catal., 101, 103 (1986).
29 H. Noller, J. A. Lercher, and H. Vinex, Mater. Chem. Phys.,
18, 577 (1998).
30 J. W. Wald, J. Catal., 10, 34 (1968).
31 S. Okazaki, Shokubai, 10, 242 (1968).
32 E. Kemnitz, Y. Zhu, and B. Adamczyk, J. Fluorine Chem.,
114, 163 (2002).
33 M. Wojciechowska, M. Zielinski, and M. Pietrowski, J.
Fluorine Chem., 120, 1 (2003).
34 Y.-X. Li and K. J. Klabunde, Langmuir, 7, 1388 (1991).
References
1 Y. Takita, G.-R. Li, R. Matsuzaki, H. Wakamatsu, H.
Nishiguchi, Y. Moro-oka, and T. Ishihara, Chem. Lett., 1997, 13.