Page 13 of 15
RSC Advances
Please do not adjust margins
Journal Name
ARTICLE
reduced bandgap energy, high crystallinity, smaller particle size,
increase in surface area and to the higher number of OH groups
exposed on the surface of the Cu-Ni-metalized TiO2. Therefore,
enhanced photocatalytic activity of the Cu-Ni/TiO2 photocatalysts
was observed under the present experimental conditions. The main
identified intermediates and by products of Orange II
photodegradation under visible light irradiation during reaction as a
function of time were oxalic acid, formic acid, formaldehyde, benzyl
alcohol and benzaldehyde as measured by HPLC analysis. The as-
prepared Cu-Ni/TiO2 photocatalysts have a great potential for
photocatalytic water purification, particularly the elimination of
toxic aromatic compounds. Highly stable Cu-Ni/TiO2 photocatalysts
with excellent responsiveness to visible light (wavelength and the
efficiency of maximum absorbance) might be beneficial for solar-
driven applications in the treatment of hazardous aqueous
pollutants and might play an important role as ‘‘green’’ and
inexpensive photocatalysts for the improvement of water quality.
2006, 302, 325-332.
DOI: 10.1039/C6RA10371E
17. I. Gandarias, J. Requies, P. L. Arias, U. Armbruster and
A. Martin, Journal of Catalysis, 2012, 290, 79-89.
18. M. J. Lázaro, Y. Echegoyen, I. Suelves, J. M. Palacios and
R. Moliner, Applied Catalysis A: General, 2007, 329, 22-
29.
19. W. Gao, R. Jin, J. Chen, X. Guan, H. Zeng, F. Zhang and
N. Guan, Catalysis Today, 2004, 90, 331-336.
20. D. Zhang and F. Zeng, Russian Journal of Physical
Chemistry A, Focus on Chemistry, 2011, 85, 1077-1083.
21. D. Zhang, Journal of Sol-Gel Science and Technology,
2011, 58, 312-318.
22. D. Zhang, Transition Metal Chemistry, 2010, 35, 933-
938.
23. R. S. K. Wong, J. Feng, X. Hu and P. L. Yue, Journal of
Environmental Science and Health, Part A: Toxic
/Hazardous
Substances
and
Environmental
Engineering, 2004, 39, 2583 - 2595.
24. N. Riaz, F. K. Chong, B. K. Dutta, Z. B. Man, M. S. Khan
and E. Nurlaela, Chemical Engineering Journal, 2012,
185–186, 108-119.
25. N. Riaz, F. K. Chong, Z. B. Man, M. S. Khan and B. K.
Dutta, Industrial & Engineering Chemistry Research,
2013, 52, 4491-4503.
26. A. Di Paola, E. García-López, G. Marcì, C. Martín, L.
Palmisano, V. Rives and A. Maria Venezia, Applied
Catalysis B: Environmental, 2004, 48, 223-233.
27. I. K. Konstantinou and T. A. Albanis, Applied Catalysis B:
Environmental, 2004, 49, 1-14.
Acknowledgments
The authors would like to acknowledge Universiti Teknologi
PETRONAS for the funding of this research work.
28. T. Velegraki, I. Poulios, M. Charalabaki, N. Kalogerakis,
P. Samaras and D. Mantzavinos, Applied Catalysis B:
Environmental, 2006, 62, 159-168.
29. R. Brás, A. Gomes, M. I. A. Ferra, H. M. Pinheiro and I.
C. Gonçalves, Journal of Biotechnology, 2005, 115, 57-
66.
30. G. Li, J. Qu, X. Zhang, H. Liu and H. Liu, Journal of
Molecular Catalysis A: Chemical, 2006, 259, 238-244.
31. L. S. Yoong, F. K. Chong and B. K. Dutta, Energy, 2009,
34, 1652-1661.
32. H. Tanaka and T. Sadamoto, Thermochimica Acta,
1982, 54, 273-280.
33. J. Sun, Y. Jing, Y. Jia, M. Tillard and C. Belin, Materials
Letters, 2005, 59, 3933-3936.
34. D. Li, H. Haneda, S. Hishita and N. Ohashi, Materials
Science and Engineering: B, 2005, 117, 67-75.
35. X. Yan, J. He, D. G. Evans, Y. Zhu and X. Duan, Journal of
Porous Materials, 2004, 11, 131-139.
36. R. Linacero, J. Aguado-Serrano and M. Rojas-Cervantes,
Journal of Materials Science, 2006, 41, 2457-2464.
37. K. Porkodi and S. D. Arokiamary, Materials
Characterization, 2007, 58, 495-503.
38. J. Mohan, Organic Spectroscopy Principles and
Applications, Harrow,U.K.: Alpha Science International
Ltd., 2nd edn., 2007.
References
1. M. S. Secula, G. D. Suditu, I. Poulios, C. Cojocaru and I.
Cretescu, Chemical Engineering Journal, 2008, 141, 18-
26.
2. P. A. Carneiro, M. E. Osugi, J. J. Sene, M. A. Anderson
and M. V. B. Zanoni, Electrochimica Acta, 2004, 49
3807-3820.
,
3. R. J. Maguire, Water Sci. Technol., 1992, 26, 265-270.
4. S. Meric, D. Kaptan and T. Olmez, Chemosphere, 2004,
54, 435–441.
5. C. M. Carliell, S. J. Barclay and C. A. Buckley, Microbial
decolourization of a reactive azo dye under anaerobic
conditions, Report 863, Water Research Commission
South Africa, 1995.
6. M. Halmann, Photodegradation of Water Pollutants,
CRC Press: Boca Raton, FL, 1996.
7. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C.
Guillard and J.-M. Herrmann, Applied Catalysis B:
Environmental, 2002, 39, 75-90.
8. M. R. Hoffmann, S. T. Martin, W. Choi and D. W.
Bahnemann, Chemical Reviews, 1995, 95, 69-96.
9. O. Carp, C. L. Huisman and A. Reller, Progress in Solid
State Chemistry, 2004, 32, 33-117.
10. A. Fujishima, T. N. Rao and D. A. Tryk, Journal of
Photochemistry and Photobiology C: Photochemistry
Reviews, 2000, 1, 1-21.
11. M. Anpo and M. Takeuchi, Journal of Catalysis, 2003,
216, 505-516.
12. D. Zhang, Monatshefte für Chemie/Chemical Monthly,
2012, 143, 729-738.
13. D. Zhang and F. Zeng, Applied Surface Science, 2010,
257, 867-871.
14. N. Riaz, M. A. Bustam, S. Ullah, A. E. Elkhalifah, G.
Gonfa and A. M. Shariff, 2016.
15. Y. Liu and D. Liu, International Journal of Hydrogen
Energy, 1999, 24, 351-354.
39. J. L. Li and T. Inui, Applied Catalysis A: General, 1996,
137, 105-117.
40. J.-P. Jolivet, Marc Henry and J. Livage, Metal Oxide
Chemistry and Synthesis – From Solution to Solid State,
John Wiley & Sons Ltd.,Chichester, 2000., 2000.
41. A. Di Paola, S. Ikeda, G. Marcì, B. Ohtani and L.
Palmisano, International Journal of Photoenergy, 2001,
3
, 171-176.
42. A. Di Paola, G. Marcì, L. Palmisano, M. Schiavello, K.
Uosaki, S. Ikeda and B. Ohtani, The Journal of Physical
Chemistry B, 2002, 106, 637-645.
43. A. Bauer, K. Lee, C. Song, Y. Xie, J. Zhang and R. Hui,
Journal of Power Sources, 2010, 195, 3105-3110.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 13
Please do not adjust margins