Journal of Materials Chemistry A p. 13799 - 13806 (2017)
Update date:2022-08-30
Topics:
Yang, Xueqin
Yu, Xiaolin
Lin, Mengya
Ge, Maofa
Zhao, Yao
Wang, Fuyi
A series of high-efficiency Pt/ZrO2 catalysts were successfully prepared by simple methods on the basis of a ZrO2 support with a mixed monoclinic/tetragonal phase structure. The activity test results showed that the mixed phase catalysts exhibited higher catalytic activity than the pure monoclinic phase, and HCHO can be completely oxidized into CO2 and H2O at near ambient temperature. XRD, Raman and HRTEM results demonstrated that the monoclinic-tetragonal phase interface with abundant defects was formed due to the introduction of the tetragonal phase. According to the results of TEM, XPS and H2-TPR, the mixed phase interfacial structure can induce the formation of the active oxygen species, ionic Ptδ+ species, strong metal-support interaction and low-temperature reducibility, which was vital for the significant improvement of the catalytic activity. Furthermore, the specific HCHO reaction rate of the catalysts at 55 °C increased from 0.8 × 10-3 to 10.4 × 10-3 mmol h-1 m-2 and the activation energy decreased remarkably from 213.5 to 24.7 kJ mol-1 with the increase of the biphase interface content. In situ DRIFTS spectra showed that the special interfacial structure can change the reaction pathway of HCHO oxidation and inhibit the formation of inert carbonate species, thus greatly enhancing the HCHO oxidation activity.
View MoreTIANJIN FESTO CHEMICAL CO.,LTD(expird)
Contact:86-22-25814570
Address:No.12th,5th Ave.,TEDA,Tianjin,China
Contact:86-379-63338609
Address:Jiudian Village,Deting Town,Song County,Luoyang
Contact:+44 7958 511245
Address:PO Box 469, Manchester, UK
Contact:+86 21 34123252
Address:14, 4580 Dushi, Shanghai, China
Synochem Ingredients Corp., Ltd.
Contact:+86-512-5636 2180
Address:Zhangjiagang Free Trade Zone
Doi:10.1021/ja01638a060
(1954)Doi:10.1246/cl.1995.281
(1995)Doi:10.1039/b9nj00696f
(2010)Doi:10.1021/jo01323a025
(1979)Doi:10.3109/14756366.2015.1108971
(2016)Doi:10.1007/BF00947705
(1985)