10.1002/anie.201900658
Angewandte Chemie International Edition
COMMUNICATION
(A)
(B)
Cs2AgBiBr6-Pt before photocatalysis
1st run
2nd run 3rd run 4th run 5th run
1.0
0.8
0.6
0.4
0.2
0.0
China (grant No. 21821004).We are grateful to Dr. Yan Guan
(college of chemistry and molecular engineering, Peking
University) for her assistance on PL measurement.
Cs2AgBiBr6-Pt after 1 run of photocatalysis
Cs2AgBiBr6-Pt after 5 runs of photocatalysis
Keywords: Lead-free perovskite • Highly efficient photocatalysis
[1]
[2]
a) D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M.
Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B.
Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351,
151-155; b) S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Science
2018, 362, 449-453.
a) K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L.
Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.
H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245-248; b) Y.
Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou,
K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z.
Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W.
Huang, Nature 2018, 562, 249-253; c) T. Chiba, Y. Hayashi, H.
Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, J. Kido, Nat.
Photonics 2018, 12, 681-687.
0
60
120
180
240
300
10
15
20
25
30
35
40
45
50
Time (min)
2 Theta (degree)
Figure 4. (A) Recycling test of Cs2AgBiBr6-Pt under visible light irradiation in
photocatalytic degradation of RhB. (B) Powder XRD patterns of Cs2AgBiBr6-Pt
before and after photocatalytic degradation of RhB.
Cycling experiments of the RhB photodegradation using
Cs2AgBiBr6 and Cs2AgBiBr6-Pt as the photocatalysts were carried
out to test their stability. As shown in Figure 4A and Figure S8A,
no obvious decline of photocatalytic efficiency for Cs2AgBiBr6 and
Cs2AgBiBr6-Pt is observed after five cycles of reaction. From
Figure S9, it can be seen that the optical absorption properties of
Cs2AgBiBr6 are similar before and after five cycles of
photocatalysis for RhB degradation. We also note the four-hour
heating of the Cs2AgBiBr6 in the air up to 240°C does not
deteriorate the performance during the following cycle for
photocatalytic dye degradation (Figure S8C), which clearly
indicates the robustness of the perovskite as the photocatalyst.
Only after five photocatalytic cycles, small peaks at 30.9° and
44.2° in the XRD spectra (Figure 4B and Figure S8B), which are
assigned to AgBr, start to appear. A slight shift in the positive
direction is observed for the binding energy of Bi 4f in the XPS
spectra (Figure S10C). The slight shift may also originate from the
existence of AgBr, which might lead to the change of chemical
environment of Bi. We conclude that the reaction products such
as water molecules might lead to partial dissolution of Cs2AgBiBr6.
Though the amount of Cs2AgBiBr6 dissolved increases as the
photocatalysts undergo further cycling, which results in the
decrease of photocatalytic efficiency, stability of five cycles of
photocatalysis represents the best performance ever reported for
Cs2AgBiBr6.
In conclusion, an alcohol based photocatalytic system was
successfully developed for halide perovskites, Cs2AgBiBr6 for this
specific case. Different from the classical pseudo-first-order
reaction kinetics, our results of pseudo-zeroth-order kinetics
indicate that the surface structure of Cs2AgBiBr6 also function as
the reaction sites for photocatalysis. Moreover, deposition of
noble metals on Cs2AgBiBr6 further improves the reaction rate
significantly. The perovskite of Cs2AgBiBr6 has huge potentials for
thermocatalysis and photocatalysis and it can be expected that
the utilization of Cs2AgBiBr6 for photocatalysis will provide new
insights for catalytic behavior at the surface of perovskites.
[3]
[4]
B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A.
Pan, L. Zhang, ACS Nano 2017, 11, 10681-10688.
a) P. Da, M. Cha, L. Sun, Y. Wu, Z. S. Wang, G. Zheng, Nano Lett.
2015, 15, 3452-3457; b) M. Crespo-Quesada, L. M. Pazos-Outon,
J. Warnan, M. F. Kuehnel, R. H. Friend, E. Reisner, Nat. Commun.
2016, 7, 12555-12561.
[5]
[6]
a) X. Sheng, Y. Liu, Y. Wang, Y. Li, X. Wang, X. Wang, Z. Dai, J.
Bao, X. Xu, Adv. Mater. 2017, 29, 1700150-1700156; b) H. Zhang,
X. Wang, Q. Liao, Z. Xu, H. Li, L. Zheng, H. Fu, Adv. Funct. Mater.
2017, 27, 1604382-1604389.
a) M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin,
Angew. Chem. 2016, 128, 4352-4356; b) S. Kazim, M. K.
Nazeeruddin, M. Graetzel, S. Ahmad, Angew. Chem. Int. Ed. 2014,
53, 2812-2824.
[7]
[8]
[9]
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc.
2009, 131, 6050-6051.
a) S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn, K. T. Nam,
Nat. Energy 2016, 2, 16185-16192; b) Y. Wu, P. Wang, X. Zhu, Q.
Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M. H. Whangbo, B. Huang,
Adv. Mater. 2018, 30, 1704342-1704347.
[10]
[11]
Y. F. Xu, M. Z. Yang, B. X. Chen, X. D. Wang, H. Y. Chen, D. B.
Kuang, C. Y. Su, J. Am. Chem. Soc. 2017, 139, 5660-5663.
a) K. Chen, X. Deng, G. Dodekatos, H. Tuysuz, J. Am. Chem. Soc.
2017, 139, 12267-12273; b) H. Huang, H. Yuan, K. P. F. Janssen,
G. Solís-Fernández, Y. Wang, C. Y. X. Tan, D. Jonckheere, E.
Debroye, J. Long, J. Hendrix, J. Hofkens, J. A. Steele, M. B. J.
Roeffaers, ACS Energy Lett. 2018, 3, 755-759; c) H. Huang, H.
Yuan, J. Zhao, G. Solís-Fernández, C. Zhou, J. W. Seo, J.
Hendrix, E. Debroye, J. A. Steele, J. Hofkens, J. Long, M. B. J.
Roeffaers, ACS Energy Lett. 2018, 4, 203-208.
[12]
[13]
T. C. Jellicoe, J. M. Richter, H. F. Glass, M. Tabachnyk, R. Brady,
S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C.
Greenham, M. L. Bohm, J. Am. Chem. Soc. 2016, 138, 2941-2944.
a) N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S.
Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K.
Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith,
Energ. Environ. Sci. 2014, 7, 3061-3068; b) Z. Shi, J. Guo, Y.
Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Adv. Mater. 2017,
29, 1605005-1605032.
[14]
[15]
[16]
[17]
A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am.
Chem. Soc. 2016, 138, 2138-2141.
L. Zhou, Y. F. Xu, B. X. Chen, D. B. Kuang, C. Y. Su, Small 2018,
14, 1703762-1703768.
E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, Chem.
Mater. 2016, 28, 1348-1354.
a) S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir 2010, 26, 3894-3901; b)
D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 2009, 21, 3479-
3484.
[18]
[19]
[20]
[21]
[22]
C. Wang, X. Zhang, H. Liu, X. Li, W. Li, H. Xu, J. Hazard. Mater.
2009, 163, 1101-1106.
C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energ.
Environ. Sci. 2014, 7, 2831-2867.
K. Jing, J. Xiong, N. Qin, Y. Song, L. Li, Y. Yu, S. Liang, L. Wu,
Chem. Commun. 2017, 53, 8604-8607.
T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B
1998, 102, 5845-5851.
Acknowledgements
This work was supported by the Ministry of Science and
Technology of China (973 project, grant Nos. 2013CB932601 and
2014CB239303) and the National Natural Science Foundation of
X. Lang, J. Zhao, Chem. Asian J. 2018, 13, 599-613.
This article is protected by copyright. All rights reserved.