5
Y. K. Sun, J. J. Vajo, C. Y. Chan and W. H. Weinberg, J. Vac. Sci.
Technol., A, 1988, 6, 854.
6
7
D. H. S. Ying and R. J. Madix, J. Catal., 1980, 61, 48.
N. Aas, Y. Li and M. Bowker, J. Phys.: Condens. Matter, 1991, 3,
S281.
8
9
X. D. Peng and M. A. Barteau, Catal. Lett., 1991, 7, 395.
P. A. Dilara and J. M. Vohs, J. Phys. Chem., 1993, 97, 12919.
1
1
0 V. A. Gercher and D. F. Cox, Surf. Sci., 1994, 312, 106.
1 J. Stubenrauch, E. Brosha and J. M. Vohs, Catal. Today, 1996, 28,
4
31.
2 R. Larsson, M. H. Jamroz and M. A. Borowiak, J. Mol. Catal. A:
Chem., 1998, 129, 41.
3 G. Y. Popova, T. V. Andrushkevich, Y. A. Chesalov and
E. S. Stoyanov, Kinet. Catal., 2000, 41, 805.
4 A. Bandara, J. Kubota and A. Wada, J. Phys. Chem. B, 1997, 101,
1
1
1
Fig.
4 The initial rate of Pt/Ru/BiO on Vulcan-72 carbon
3
5 J. Rasko, T. Kecskes and J. Kiss, J. Catal., 2004, 224, 261.
6 T. Shido and Y. Iwasawa, J. Catal., 1993, 141, 71.
7 G. Jacobs, P. M. Patterson, U. M. Graham, A. C. Crawford and
B. H. Davis, Int. J. Hydrogen Energy, 2005, 30, 1265.
18 G. Jacobs, P. M. Patterson, U. M. Graham, A. C. Crawford,
61.
(Pt/Ru/Bi B 2 : 1 : 4) towards formic acid decomposition at 80 1C
1
1
1
with different concentrations of formic acid.
The high selectivity and high rate may be attributed to the
synergistic roles of platinum, ruthenium, and bismuth oxide in
cleaving C–H bonds, minimizing CO adsorption or oxidizing
A. Dozier and B. H. Davis, J. Catal., 2005, 235, 79.
19 Y. Yasaka, H. Yoshida, C. Wakai, N. Matubayasi and
M. Nakahar, J. Phys. Chem. A, 2006, 110, 11082.
20 M. Ojeda and E. Iglesia, Angew. Chem., Int. Ed., 2009, 48, 4800.
2
CO, and facilitating generation and removal of CO .
Chemisorption measurements showed significantly less CO
sorption on PtRuBiOx than PtRu on Vulcan carbon
21 A. Bjerre and E. Sorensen, Ind. Eng. Chem. Res., 1992, 31, 1574.
22 J. Yu and P. E. Savage, Ind. Eng. Chem. Res., 1998, 37, 2.
23 P. G. Maiella and T. B. Brill, J. Phys. Chem. A, 1998, 102, 5886.
24 S. Fukuzumi, T. Suenobu and S. Ogo, WO/2008/059630,
PCT/JP2007/060115.
(
see ESI Part 7w). The role of Ru in promoting Pt for efficient
33,34
C–H cleavage without CO poisoning has been discussed
3
5–37
and a similar role has been suggested for Bi.
Bismuth
2
5 G. Laurenczy, C. Fellay and P. Dyson, WO/2008/047312,
PCT/IB2007/054222.
6 S. Fukuzumi, T. Kobayashi and T. Suenobu, ChemSusChem, 2008,
oxide appears to offer a unique role in lowering the activation
energy and offering high selectivity to dehydrogenation.
2
Bismuth has different carbonates including (BiO)
and bismuth subcarbonate (BiO) (CO ) that can be formed
and play a possible role in
removing the product or forming the intermediate as
adsorbed CO
4 3
(OH)CO
1
, 827.
27 C. Fellay, P. J. Dyson and G. Laurenczy, Angew. Chem., Int. Ed.,
2008, 47, 3966.
2
3
3
8
2 2 3
from CO , water, and Bi O
2
8 C. Fellay, N. Yan, P. J. Dyson and G. Laurenczy, Chem.–Eur. J.,
009, 15, 3752.
2
2
.
29 B. Loges, A. Boddien, H. Junge and M. Beller, Angew. Chem., Int.
Ed., 2008, 47, 3962.
The high selectivity and high reaction rate of the PtRuBiOx
catalyst at ambient conditions show promise for a convenient
hydrogen generation device. Further increase in reaction rates
is possible with a continuous flow-through reactor packed
with the heterogeneous catalyst. Optimizations can be made in
fine tuning catalyst composition, particle size, properties of the
support, and operation pressure. The low activation energy
of the reaction and the unique role of bismuth oxide
suggest new perspectives in the mechanisms of formic acid
dehydrogenation in the aqueous phase.
3
3
3
3
0 H. Junge, A. Boddien, F. Capitta, B. Loges, J. R. Noyes,
S. Gladiali and M. Beller, Tetrahedron Lett., 2009, 50, 1603.
1 A. Boddien, B. Loges, H. Junge and M. Beller, ChemSusChem,
2008, 1, 751.
2 X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao and T. Lu, Chem.
Commun., 2008, 3540.
3 M. Watanabe, M. Uchia and S. Motto, J. Electroanal. Chem.,
1
34 H. Schmidt, P. Buchner, A. Datz, K. Dennerlein, S. Lang and
987, 229, 395.
M. Waidbas, J. Power Sources, 2002, 105, 243.
5 E. Casado-Rivera, Z. Gal, A. C. D. Angelo, C. Lind, F. J. DiSalvo
and H. D. Abruna, ChemPhysChem, 2003, 4, 193.
3
Financial support from The Hong Kong Research Grants
Council GRF HKU 700208P, ‘‘Initiative on Clean Energy and
Environment’’ of The University of Hong Kong Development
Fund, and the HKU Strategic Research Theme on
36 E. Casado-Rivera, D. Volpe, L. Alden, C. Lind, C. Downie,
T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo and
H. D. Abruna, J. Am. Chem. Soc., 2004, 126, 4043.
3
7 A. V. Tripkovic, K. Dj. Popovic, R. M. Stevanovic, R. Socha and
A. Kowal, Electrochem. Commun., 2006, 8, 1492.
‘
‘Clean Energy Research’’ are acknowledged.
38 P. Taylor, S. Sunder and V. J. Lopata, Can. J. Chem., 1984, 62,
863.
2
3
9 I. Martin, T. Skalicky, J. Langer, H. Abdoul-Carime, G. Karwasz,
E. Illenberger, M. Stano and S. Matejcik, Phys. Chem. Chem.
Phys., 2005, 7, 2212.
Notes and references
1
2
A. Mailhe and P. Sabatier, Compt. Rend. Acad. Sci., 1911, 152, 1212.
K. Hirota, K. Kuwata and Y. Nakai, Bull. Chem. Soc. Jpn., 1958,
40 N. Akiya and P. E. Savage, AIChE J., 1998, 44, 405.
41 J. S. Ferrer, E. Couallier, M. Rakib and G. Durand, Electrochim.
Acta, 2007, 52, 5773.
42 M. A. Borowiak, M. H. Jamro
Chem., 2000, 152, 121.
31, 861.
3
4
P. Mars, Proceedings of symposium on the mechanism of
heterogeneous catalysis, Amsterdam, The Netherlands, 1959.
P. Mars, J. J. F. Scholten and P. Zwietering, Adv. Catal., 1963, 14, 35.
´
z and R. Larsson, J. Mol. Catal. A:
This journal is ꢁc The Royal Society of Chemistry 2009
Chem. Commun., 2009, 7333–7335 | 7335