Organic Process Research & Development
Article
Chem. Soc. 2015, 137, 9571. (b) Kalow, J. A.; Schmitt, D. E.; Doyle, A.
G. Synthesis of β-Fluoroamines by Lewis Base Catalyzed Hydro-
fluorination of Aziridines. J. Org. Chem. 2012, 77, 4177. (c) Muathen,
H. A. 1,8-Diazabicyclo[5.4.0]undec-7-ene Hydrobromide Perbro-
mide: A New Mild Stable Brominating Agent for Aromatic
Compounds. J. Org. Chem. 1992, 57, 2740.
Continuous Base-Catalyzed Methylation of Phenols with Dimethyl
Carbonate. Org. Process Res. Dev. 2012, 16, 1150.
(17) Nagata, K.; Dejima, E.; Kikuchi, Y.; Hashiguchi, M. Efficient
and Scalable Method for [60]Fullerene Separation from a Fullerene
Mixture: Selective Complexation of Fullerenes with DBU in the
Presence of Water. Org. Process Res. Dev. 2005, 9, 660.
(13) (a) McCabe Dunn, J. M.; Reibarkh, M.; Sherer, E. C.; Orr, R.
(18) (a) Whitney, D. B.; Tam, J. P.; Merrifield, R. B. A new base-
catalyzed cleavage reaction for the preparation of protected peptides.
K.; Ruck, R. T.; Simmons, B.; Bellomo, A. The Protecting-Group Free
Selective 3′-Functionalization of Nucleosides. Chem. Sci. 2017, 8,
Tetrahedron 1984, 40, 4237. (b) Barton, D. H. R.; Elliott, J. D.; Gero,
́
2804. (b) Orr, R. K.; McCabe Dunn, J. M.; Nolting, A.; Hyde, A. M.;
S. D. The Synthesis and Properties of a Series of Strong but Hindered
Organic Bases. J. Chem. Soc., Chem. Commun. 1981, 1136−1137.
(19) (a) Alder, R. W.; Sessions, R. B. Synthesis of medium-ring
bicyclic diamines by the alkylation and cleavage of cyclic amidines.
Tetrahedron Lett. 1982, 23, 1121. (b) Jost, M.; Greie, J.; Stemmer, N.;
Wilking, S. D.; Altendorf, K.; Sewald, N. The First Total Synthesis of
Efrapeptin C. Angew. Chem., Int. Ed. 2002, 41, 4267. (c) Reed, R.;
Ashley, E. R.; Leone, J.; Sirota, E.; Jurica, J. A.; Gibson, A.; Wise, C.;
Oliver, S.; Ruck, R. T. New Reactions and Processes for the Efficient
Synthesis of a HCV NS5b Prodrug. Green Chem. 2018, 20, 2519.
(14) (a) Jiang, X.; Boehm, P.; Hartwig, J. F. Stereodivergent
Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium
and Copper Catalysis. J. Am. Chem. Soc. 2018, 140, 1239. (b) Knauber,
T.; Chandrasekaran, R.; Tucker, J. W.; Chen, J. M.; Reese, M.; Rankic,
D. A.; Sach, N.; Helal, C. Ru/Ni Dual Catalytic Desulfinative
Reau, R.; Dahan, F.; Bertrand, G. DBU and DBN are Strong
́
Nucleophiles: X-Ray Crystal Structures of Onio- and Dionio-
Substituted Phosphanes. Angew. Chem., Int. Ed. Engl. 1993, 32, 399.
(d) Kers, A.; Kers, I.; Stawinski, J. The reaction of diphenyl and
dialkyl phosphorochloridates with 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU). Formation of phosphonate diesters via N→C phosphorus
migration. J. Chem. Soc., Perkin Trans. 2 1999, 2, 2071. (e) Carafa, M.;
Mesto, E.; Quaranta, E. DBU-Promoted Nucleophilic Activation of
Carbonic Acid Diesters. Eur. J. Org. Chem. 2011, 2011, 2458.
(f) Taylor, J. E.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. N-Acyl
DBN Tetraphenylborate Salts as N-Acylating Agents. J. Org. Chem.
Photoredox Csp2−C Cross-Coupling of Alkyl Sulfinate Salts and
3
sp
Aryl Halides. Org. Lett. 2017, 19, 6566. (c) Desrosiers, J.-N.; Wei, X.;
Gutierrez, O.; Savoie, J.; Qu, B.; Zeng, X.; Lee, H.; Grinberg, N.;
Haddad, N.; Yee, N. K.; Roschangar, F.; Song, J. J.; Kozlowski, M. C.;
Senanayake, C. H. Nickel-catalyzed C-3 direct arylation of pyridinium
ions for the synthesis of 1-azafluorenes. Chem. Sci. 2016, 7, 5581.
(d) Hayashi, M.; Matsuura, T.; Tanaka, I.; Ohta, H.; Watanabe, Y. Pd-
Catalyzed P−C Cross-Coupling Reactions for Versatile Triarylphos-
phine Synthesis. Org. Lett. 2013, 15, 628. (e) Dubovyk, I.; Watson, I.
D. G.; Yudin, A. K. Chasing the Proton Culprit from Palladium-
Catalyzed Allylic Amination. J. Am. Chem. Soc. 2007, 129, 14172.
2012, 77, 2808. (g) Perez, E. R.; Santos, R. H. A.; Gambardella, M. T.
́
P.; de Macedo, L. G. M.; Rodrigues-Filho, U. P.; Launay, J.-C.;
Franco, D. W. Activation of Carbon Dioxide by Bicyclic Amidines. J.
Org. Chem. 2004, 69, 8005.
(f) Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. Achieving Control over
the Branched/Linear Selectivity in Palladium-Catalyzed Allylic
Amination. J. Org. Chem. 2013, 78, 1559. (g) An, Q.; Liu, D.; Shen,
J.; Liu, Y.; Zhang, W. The Construction of Chiral Fused Azabicycles
Using a Pd-Catalyzed Allylic Substitution Cascade and Asymmetric
Desymmetrization Strategy. Org. Lett. 2017, 19, 238. (h) Tang, J.; Lv,
L.; Dai, X.-J.; Li, C.-C.; Li, L.; Li, C.-J. Nickel-catalyzed cross-coupling
of aldehydes with aryl halides via hydrazone intermediates. Chem.
Commun. 2018, 54, 1750. (i) Oh, K. H.; Kim, S. M.; Park, S. Y.; Park,
J. K. Base-Controlled Cu-Catalyzed Tandem Cyclization/Alkynyla-
tion for the Synthesis of Indolizines. Org. Lett. 2016, 18, 2204.
(20) According the Mayr nucleophilicity scale, the following values
have been established in MeCN: DBN (N = 16.28) > DBU (N =
15.29) > DMAP (N = 14.95) > PPh (N = 14.33, in CH Cl ). The N
3
2
2
value of MTBD was not directly reported, but it was determined by a
different scale to be more nucleophilic than DMAP. (a) Baidya, M.;
Mayr, H. Nucleophilicities and Carbon Basicities of DBU and DBN.
Chem. Commun. 2008, 1792. (b) Mayr, H.; Ammer, J.; Baidya, M.;
Maji, B.; Nigst, T. A.; Ofial, A. R.; Singer, T. Scales of Lewis Basicities
toward C-Centered Lewis Acids (Carbocations). J. Am. Chem. Soc.
2015, 137, 2580. For a DFT study that corroborates Mayr’s findings,
see: (c) Deuri, S.; Phukan, P. A DFT Study on Nucleophilicity and
Site Selectivity of Nitrogen Nucleophiles. Comput. Theor. Chem. 2012,
980, 49.
(21) Using the same equation for nucleophilicity established by
Mayr, but reacting with MeI in DMF, the following values were
obtained: TBD (N = 17.6) > DBN (N = 16.1) > DBU (N = 15.3) >
MTBD (N = 13.7) > TMG (N = 12.7). Gholamipour-Shirazi, A.;
Rolando, C. Kinetics screening of the N-alkylation of organic
superbases using a continuous flow microfluidic device: basicity
versus nucleophilicity. Org. Biomol. Chem. 2012, 10, 8059.
(22) (a) Maji, B.; Stephenson, D. S.; Mayr, H. Guanidines: Highly
Nucleophilic Organocatalysts. ChemCatChem 2012, 4, 993. (b) Tay-
lor, J. E.; Bull, S. D.; Williams, J. M. J. Amidines, Isothioureas, and
Guanidines as Nucleophilic Catalysts. Chem. Soc. Rev. 2012, 41, 2109.
(c) Selig, P. Guanidine Organocatalysis. Synthesis 2013, 45, 703.
(23) (a) Kiesewetter, M. K.; Scholten, M. D.; Kirn, N.; Weber, R. L.;
Hedrick, J. L.; Waymouth, R. M. Cyclic Guanidine Organic Catalysts:
What Is Magic About Triazabicyclodecene? J. Org. Chem. 2009, 74,
9490. (b) Weiberth, F. J.; Yu, Y.; Subotkowski, W.; Pemberton, C.
Demonstration on Pilot-Plant Scale of the Utility of 1,5,7-
Triazabicyclo[4.4.0]dec-5-ene (TBD) as a Catalyst in the Efficient
Amidation of an Unactivated Methyl Ester. Org. Process Res. Dev.
2012, 16, 1967.
(j) Kumagai, N.; Matsunaga, S.; Shibasaki, M. Cooperative Catalysis
of a Cationic Ruthenium Complex, Amine Base, and Na Salt:
Catalytic Activation of Acetonitrile as a Nucleophile. J. Am. Chem. Soc.
2
004, 126, 13632. (k) Kim, G.; Kim, J. H.; Lee, K. Y. New Palladium-
Catalyzed Reaction Pathway to the Erythrina Skeleton. J. Org. Chem.
006, 71, 2185.
15) (a) Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. Expedited
2
(
Palladium-Catalyzed Amination of Aryl Nonaflates through the Use of
Microwave-Irradiation and Soluble Organic Amine Bases. J. Org.
Chem. 2006, 71, 430. (b) Dennis, J. M.; White, N. A.; Liu, R. Y.;
Buchwald, S. L. Breaking the Base Barrier: An Electron-Deficient
Palladium Catalyst Enables the Use of a Common Soluble Base in C−
N Coupling. J. Am. Chem. Soc. 2018, 140, 4721. (c) Dennis, J. M.;
White, N. A.; Liu, R. Y.; Buchwald, S. L. Pd-Catalyzed C−N Coupling
Reactions Facilitated by Organic Bases: Mechanistic Investigation
Leads to Enhanced Reactivity in the Arylation of Weakly Binding
Amines. ACS Catal. 2019, 9, 3822. (d) Tao, Y.; Keene, N. F.;
Wiglesworth, K. E.; Sitter, B.; McWilliams, J. C. Early Process
Development of an Irreversible Epidermal Growth Factor Receptor
(
EGFR) T790 M Inhibitor. Org. Process Res. Dev. 2019, 23, 382.
(16) (a) Reizman, B. J.; Wang, Y.-M.; Buchwald, S. L.; Jensen, K. F.
Suzuki−Miyaura Cross-Coupling Optimization Enabled by Auto-
mated Feedback. React. Chem. Eng. 2016, 1, 658. (b) Jaman, Z.; Mufti,
A.; Sah, S.; Avramova, L.; Thompson, D. H. High Throughput
Experimentation and Continuous Flow Validation of Suzuki−Miyaura
Cross-Coupling Reactions. Chem. - Eur. J. 2018, 24, 9546. (c) Kelly,
C. B.; Lee, C.; Mercadante, M. A.; Leadbeater, N. E. A Continuous-
Flow Approach to Palladium-Catalyzed Alkoxycarbonylation Reac-
tions. Org. Process Res. Dev. 2011, 15, 717. (d) Tilstam, U. A.
(24) (a) Lewis, C. A.; Wolfenden, R. The Nonenzymatic
Decomposition of Guanidines and Amidines. J. Am. Chem. Soc.
2014, 136, 130. (b) Halliday, J. D.; Symons, E. A. The Chemistry of
N,N’-Dimethylformamidine. 11. Hydrolysis. Kinetically Controlled
Formation of cis-N-Methylformamide. Can. J. Chem. 1978, 56, 1463.
J
Org. Process Res. Dev. XXXX, XXX, XXX−XXX