5122
J. S. Rebouc¸as, B. R. James / Tetrahedron Letters 47 (2006) 5119–5122
39. Franco, R.; Bai, G.; Prosinecki, V.; Abrunhosa, F.;
Ferreira, G. C.; Bastos, M. Biochem. J. 2005, 386, 599–
605.
40. Hansson, M. D.; Lindstam, M.; Hansson, M. J. Biol.
Inorg. Chem. 2006, 11, 325–333.
41. Drummond, G. S.; Galbraith, R. A.; Sardana, M. K.;
Kappas, A. Arch. Biochem. Biophys. 1987, 255, 67–74.
42. Koeppen, A. H.; Dickson, A. C.; Smith, J. J. Neuropathol.
Exp. Neurol. 2004, 63, 587–597.
43. Turkseven, S.; Kufer, A.; Mingone, C. J.; Kaminski, P.;
Inaba, M.; Rodella, L. F.; Ikehara, S.; Wolin, M. S.;
Abraham, N. G. Am. J. Physiol. 2005, 289, H701–H707.
44. Lara, F. A.; Lins, U.; Bechara, G. H.; Oliveira, P. L. J.
Exp. Biol. 2005, 208, 3093–3101.
mixture was flushed with N2 for 5 min, opened to the
atmosphere, and concentrated to ꢀ5 mL. Water (50 mL)
was added and the suspension was then filtered through
Celite. The purple solid was washed with H2O, and then
MeOH, and collected by elution with CH2Cl2; a black
solid (presumably PtO2) remained on the Celite pad. The
CH2Cl2 solution was evaporated to dryness and the
resulting solid was dissolved in ꢀ5 mL of CHCl3 (used
as received, containing 0.75% EtOH). This solution was
percolated through a neutral Al2O3 (Brockmann activity I)
plug. The filtrate was collected and evaporated to dryness.
The purple solid was further dried in an Abderhalden
pistol (EtOH) overnight. Yield: 24.7 mg (81%). Charac-
terization data are below.63
45. Mesquita, R. D.; de Oliveira, F. M. B.; Shugar, D.;
Fantappie, M. R.; Silva-Neto, M. A. C. Biochem. Biophys.
Res. Commun. 2005, 335, 690–699.
60. Peixoto, A.; Pereira, M. M.; Neves, M. G. P. M. S.; Silva,
A. M. S.; Cavaleiro, J. A. S. Tetrahedron Lett. 2003, 44,
5593–5595.
46. Kappas, A.; Drummond, G. S.; Munson, D. P.; Marshall,
J. R. Pediatrics 2001, 108, 1374–1377.
47. Rubaltelli, F. F. Drugs 1998, 56, 23–30.
48. Zhang, W.; Contag, P. R.; Stevenson, D. K.; Contag, C.
H. Proc. SPIE 1999, 3600, 130–135.
61. Peixoto, A. F.; Pereira, M. M.; Sousa, A. F.; Pais, A. A.
C.; Neves, M. G. P. M. S.; Silva, A. M . S.; Cavaleiro,
J. A. S. J. Mol. Catal. A: Chem. 2005, 235, 185–193.
62. Liu, X.; Sternberg, E.; Dolphin, D. Chem. Commun. 2004,
852–853.
49. Luk, S. Y.; Williams, J. O. J. Chem. Soc., Chem. Commun.
1989, 158–159.
50. Sakamoto, M.; Ueno, A.; Mihara, H. Chem. Commun.
2000, 1741–1742.
51. Kepczynski, M.; Eherenberg, B. Photochem. Photobiol.
2002, 76, 486–492.
52. Caughey, W. S.; Alben, J. O.; Fujimoto, W. Y.; York,
J. L J. Org. Chem. 1966, 31, 2631–2640.
53. Muir, H. M.; Neuberger, A. Biochem. J. 1949, 45, 163–
170.
54. Fuhrhop, J.-H.; Smith, K. M. In Porphyrins and Metal-
loporphyrins; Smith, K. M., Ed.; Elsevier: Amsterdam,
1975; Chapter 19, p 773.
55. Baker, E. W.; Ruccia, M.; Corwin, A. H. Anal. Biochem.
1964, 8, 512–518.
56. Baker, E. W.; Lachman, M.; Corwin, A. H. Anal.
Biochem. 1964, 8, 503–511.
63. The apparatus described above59 was charged with
‘RuCl3’ (1.91 mg, 0.008 mmol in Ru) and DMA (10 mL),
and the mixture was warmed to 80 °C with magnetic
stirring. The resulting brownish-red solution was flushed
10 min with Ar and then a slow flow of H2 was introduced
at 80 °C for 1.5 h, during which time the color changed to
pale yellow. H2PPIX-DME (20.7 mg, 0.035 mmol), con-
tained in a glass half-capsule, was then added. After
30 min, the UV–vis spectrum of a sample aliquot showed
complete conversion. The mixture was cooled to room
temperature, flushed with Ar for 5 min, opened to the
atmosphere, and concentrated to ꢀ5 mL. The work-up
procedure for isolation of H2mesoPIX-DME was identical
to that described above,59 except that Ru salts were
eliminated in the H2O/MeOH washings. Yield: 17.9 mg
(86%). Anal. Calcd for H2mesoPIX-DME, C36H42N4O4:
C, 72.70; H, 7.12; N, 9.42. Found: C, 72.91; H, 7.11; N,
57. Taylor, J. F. J. Biol. Chem. 1940, 135, 569–595.
9.74. UV–vis (CH2Cl2): 398 nm (loge/L molÀ1 cmÀ1
,
58. Judd, R. J.; Cao, R.; Biner, M.; Armbruster, T.; Burgi,
¨
5.15), 498 (4.10), 532 (3.94), 568 (3.76), 620 (3.61). IR
H.-B.; Merbach, A. E.; Ludi, A. Inorg. Chem. 1995, 34,
5080–5083.
(KBr): 3314 cmÀ1 (mNH), 1735 (mCO). 1H NMR (CDCl3): d
3
10.10, 10.09 (2 s, 4H, meso-H), 4.42 (t, 4H, JHH = 7.59
3
59. A 125 mL three-neck-round-bottom flask fitted with a
reflux condenser and an oil-bubbler was charged with
H2PPIX-DME (30.9 mg, 0.052 mmol), PtO2 (3.21 mg,
0.014 mmol), and DMF (50 mL), and the mixture was
warmed to 60 °C with magnetic stirring. The purple
solution was flushed with N2 for 10 min before H2 was
introduced. The mixture was kept at 60 °C under a slow
flow of H2 for 30 min, when the UV–vis spectrum of a
sample of the mixture showed complete conversion to
H2mesoPIX-DME (the 630 nm band of H2PPIX-DME is
replaced by the 620 nm band of H2mesoPIX-DME57). The
Hz, CH2CH2CO2), 4.08 (q, 4H, JHH = 7.62, CH2CH3),
3.65 (s, 6H, CO2CH3), 3.64, 3.62 (2s, 12H, CH3), 3.28 (t,
3
3
4H, JHH = 7.59, CH2CO2), 1.85 (t, 6H, JHH = 7.62,
CH2CH3). ESI-MS (9:1 MeOH/CH2Cl2, positive mode):
m/z 595 (100%, [H2mesoPIX-DME+H]+). Spectroscopic
data agree with those reported.52,54,64,65
64. Smith, K. M. In Porphyrins and Metalloporphyrins; Smith,
K. M., Ed.; Elsevier: Amsterdam, 1975; pp 872–877.
Appendix.
65. Caughey, W. S.; Koshi, W. S. Biochemistry 1962, 1, 923–
931.