4
886
M.-C. Saada et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4884–4887
Table 1
hCA I and II activation with histamine and halogenated/protected-histamine deriv-
atives 4–7, by a stopped-flow, CO hydrase assay
2
constants of 0.7–21 nM against hCA I and of 1–115 nM against
hCA II. The monohalogenated histamines were generally more ac-
tive than the corresponding dihalogenated derivatives. CA activa-
tion increased with the increase of atomic weight of the halogen.
Some of the compounds reported here are among the most effective
hCA I and II activators reported so far, with low nanomolar or subn-
anomolar activation constants.
2
2
*
No.
X
A
K (lM)
hCA I
hCA II
Histamine
2.0
125
4
4
4
5
5
5
6
6
6
7
7
7
a
b
c
a
b
c
a
b
c
a
b
c
Cl
Br
I
Cl
Br
I
Cl
Br
I
Cl
Br
I
5.4
7.1
29.3
16.5
13.3
12.1
0.021
0.015
0.0009
0.018
0.012
0.0007
50.2
44.5
13.6
24.8
28.5
36.7
0.115
0.096
0.065
0.032
0.008
0.001
References and notes
1.
(a) Supuran, C. T. Nat. Rev. Drug Disc. 2008, 7, 168; (b) Supuran, C. T. Bioorg. Med.
Chem. Lett. 2010, 20, 3467; (c) Ebbesen, P.; Pettersen, E. O.; Gorr, T. A.; Jobst, G.;
Williams, K.; Kienninger, J.; Wenger, R. H.; Pastorekova, S.; Dubois, L.; Lambin,
P.; Wouters, B. G.; Supuran, C. T.; Poellinger, L.; Ratcliffe, P.; Kanopka, A.;
Görlach, A.; Gasmann, M.; Harris, A. L.; Maxwell, P.; Scozzafava, A. J. Enzyme
Inhib. Med. Chem. 2009, 24, 1.
2.
(a) Wagner, J. M.; Avvaru, B. S.; Robbins, A. H.; Scozzafava, A.; Supuran, C. T.;
McKenna, R. Bioorg. Med. Chem. 2010, 18, 4873; (b) Pacchiano, F.; Aggarwal, M.;
Avvaru, B. S.; Robbins, A. H.; Scozzafava, A.; McKenna, R.; Supuran, C. T. Chem.
Commun. (Camb) 2010, 46, 8371; (c) Pastorekova, S.; Parkkila, S.; Pastorek, J.;
Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2004, 19, 199; (d) Franchi, M.; Vullo,
D.; Gallori, E.; Pastorek, J.; Russo, A.; Scozzafava, A.; Pastorekova, S.; Supuran, C.
T. J. Enzyme Inhib. Med. Chem. 2003, 18, 333.
*
Mean from three different determinations. Errors were in the range of ±10ꢀ of the
reported values.
3
4
.
.
(a) Winum, J. Y.; Rami, M.; Scozzafava, A.; Montero, J. L.; Supuran, C. Med. Res.
Rev. 2008, 28, 445; (b) Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. Rev.
enhanced CA activating properties compared to the corre-
2003, 23, 146.
sponding protected ones from which they were obtained
and also compared to the lead 1. Indeed, these CAAs showed
activation constants in the range of 0.7–21 nM (Table 1).
Comparable activity was observed both for the mono- as
well as dihalogenated compounds. In all cases, the iodine
derivatives were more active than the corresponding bro-
mine ones which in turn were more active than the chlori-
nated histamines. Indeed, the di-iodinated histamine 6c
and the mono-iodinated one 7c are among the most effec-
(a) De Simone, G.; Di Fiore, A.; Menchise, V.; Pedone, C.; Antel, J.; Casini, A.;
Scozzafava, A.; Wurl, M.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2005, 15, 2315;
(b) Casini, A.; Antel, J.; Abbate, F.; Scozzafava, A.; David, S.; Waldeck, H.;
Schafer, S.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2003, 13, 841; (c) Abbate, F.;
Casini, A.; Owa, T.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2004,
1
4, 217; (d) Abbate, F.; Casini, A.; Scozzafava, A.; Supuran, C. T. Bioorg. Med.
Chem. Lett. 2004, 14, 2357; (e) Vullo, D.; Franchi, M.; Gallori, E.; Pastorek, J.;
Scozzafava, A.; Pastorekova, S.; Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2003,
1
8, 403.
5
.
(a) Buller, F.; Steiner, M.; Frey, K.; Mircsof, D.; Scheuermann, J.; Kalisch, M.;
Bühlmann, P.; Supuran, C. T.; Neri, D. ACS Chem. Biol. 2011, 6, 336; (b) Kivelä, A.
J.; Parkkila, S.; Saarnio, J.; Karttunen, T. J.; Kivelä, J.; Parkkila, A. K.; Pastoreková,
S.; Pastorek, J.; Waheed, A.; Sly, W. S.; Rajaniemi, H. Histochem. Cell Biol. 2000,
A
tive hCA I activators ever reported (K s of 0.7–0.9 nM).
(
ii) All compounds investigated here, of type 4–7, were more
potent as hCA II activators compared to histamine 1, which
1
14, 197; (c) Swietach, P.; Wigfield, S.; Cobden, P.; Supuran, C. T.; Harris, A. L.;
Vaughan-Jones, R. D. J. Biol. Chem. 2008, 283, 20473.
1
1
6. (a) Pacchiano, F.; Carta, F.; McDonald, P. C.; Lou, Y.; Vullo, D.; Scozzafava, A.;
Dedhar, S.; Supuran, C. T. J. Med. Chem. 2011, 54, 1896; (b) Lou, Y.; McDonald, P.
C.; Oloumi, A.; Chia, S. K.; Ostlund, C.; Ahmadi, A.; Kyle, A.; Auf dem Keller, U.;
Leung, S.; Huntsman, D. G.; Clarke, B.; Sutherland, B. W.; Waterhouse, D.; Bally,
M. B.; Roskelley, C. D.; Overall, C. M.; Minchinton, A.; Pacchiano, F.; Carta, F.;
Scozzafava, A.; Touisni, N.; Winum, J. Y.; Supuran, C. T.; Dedhar, S. Cancer Res.
is a quite weak activator of this isoforms (K
The boc-protected compounds 4 and 5 were again less effec-
tive CAAs, with K s in the range of 13.6–50.2 M. For the
A
of 125 lM).
A
l
dihalogenated compounds 4, activity increased with the
increase in the atomic weight of the halogen atom, whereas
for the monohalogenated, boc-protected derivatives 5, the
most active compound was the chlorine derivative and the
least active one the iodinated one. However, all of them
are medium potency-weak hCA II activators. The deprotec-
ted derivatives 6 and 7 on the other hand showed an
2011, 71, 3364.
7. (a) Ilies, M.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase activators. In
Carbonic Anhydrase – Its Inhibitors and Activators; Supuran, C. T., Scozzafava, A.,
Conway, J., Eds.; CRC Press: Boca Raton, 2004; pp 317–352; (b) Temperini, C.;
Scozzafava, A.; Supuran, C. T. Drug design studies of carbonic anhydrase
activators. In Drug Design of Zinc-Enzyme Inhibitors – Functional, Structural, and
Disease Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken, 2009;
pp 473–486.
enhanced activating power, with K
A
s in the range of
8
9
.
.
Temperini, C.; Scozzafava, A.; Supuran, C. T. Curr. Pharm. Des. 2008, 14, 708.
(a) Temperini, C.; Scozzafava, A.; Puccetti, L.; Supuran, C. T. Bioorg. Med. Chem.
Lett. 2005, 15, 5136; (b) Temperini, C.; Scozzafava, A.; Supuran, C. T. Bioorg.
Med. Chem. Lett. 2006, 16, 5152.
1
–115 nM (Table 1). The dihalogenated histamines 6a–c
showed activation constants of 65–115 nM, with activity
increasing from chlorine to iodine-containing compounds.
A further increase of activity has been observed for the
1
1
0. (a) Temperini, C.; Scozzafava, A.; Vullo, D.; Supuran, C. T. Chem. Eur. J. 2006, 12,
057; (b) Temperini, C.; Vullo, D.; Scozzafava, A.; Supuran, C. T. J. Med. Chem.
7
A
monohalogenated derivatives 7, which had K s in the range
2006, 49, 3019; (c) Temperini, C.; Innocenti, A.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. 2008, 16, 8373.
1
–32 nM, with activity varying in the same manner with the
1. Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran, C.
T. Biochemistry 1997, 36, 10384.
nature of the halogen atom as for the dihalogenated ones.
Thus, generally the best activity has been observed for com-
pounds incorporating only one halogen atom, and the hea-
vier this was, better the CA activating properties were.
12. Becker, H. M.; Klier, M.; Schüler, C.; McKenna, R.; Deitmer, J. W. Proc. Natl. Acad.
Sci. U.S.A. 2011, 108, 3071.
1
3. (a) Elder, I.; Tu, C.; Ming, L. J.; McKenna, R.; Silverman, D. N. Arch. Biochem.
Biophys. 2005, 437, 106; (b) Tripp, B. C.; Ferry, J. G. Biochemistry 2000, 39, 9232.
4. (a) Dave, K.; Ilies, M. A.; Scozzafava, A.; Temperini, C.; Vullo, D.; Supuran, C. T.
Bioorg. Med. Chem. Lett. 2011, 21, 2764; (b) Dave, K.; Scozzafava, A.; Vullo, D.;
Supuran, C. T.; Ilies, M. A. Org. Biomol. Chem. 2011, 9, 2790.
1
In conclusion, we prepared ring mono- and dihalogenated hista-
mine derivatives incorporating chlorine, bromine and iodine. The
corresponding boc-protected derivatives (at the aminoethyl group)
ere also obtained. All these histamines have been assayed for the
activation of the cytosolic CA isoforms hCA I and II. Very net SAR
has been obtained for these enzyme activators: against both iso-
forms the boc-protected histamines were moderately active, with
1
5. (a) Parkkila, S.; Vullo, D.; Puccetti, L.; Parkkila, A. K.; Scozzafava, A.; Supuran, C.
T. Bioorg. Med. Chem Lett. 2006, 16, 3955; (b) Vullo, D.; Nishimori, I.; Scozzafava,
A.; Supuran, C. T. Bioorg. Med. Chem. Lett 2008, 18, 4303.
16. (a) Elder, I.; Fisher, Z.; Laipis, P. J.; Tu, C.; McKenna, R.; Silverman, D. N. Proteins
2007, 68, 337; (b) Duda, D. M.; Tu, C.; Fisher, S. Z.; An, H.; Yoshioka, C.;
Govindasamy, L.; Laipis, P. J.; Agbandje-McKenna, M.; Silverman, D. N.;
McKenna, R. Biochemistry 2005, 44, 10046.
1
7. Supuran, C. T.; Scozzafava, A. Carbonic anhydrase activators as potential anti-
Alzheimer’s disease agents. In Protein Misfolding in Neurodegenerative Diseases:
Mechanisms and Therapeutic Strategies; Smith, H. J., Simons, C., Sewell, R. D. E.,
Eds.; CRC Press: Boca Raton (FL)., 2007; pp 265–288.
activation constants of 5.4–29.3
0.2 M against hCA II. The boc-deprotected halogenated hista-
mines showed a enhanced activity as CAAs, with activation
lM against hCA I, and of 13.6–
5
l