ChemComm
COMMUNICATION
DOI: 10.1039/C C0505
Jou4Crnal Na0Ame
A. Ellman and R. G. Bergman, J. Am. Chem. Soc., 2013, 135, 6427; (e)
K. J. Stowers, K. C. Fortner and M. S. Sanford, J. Am. Chem. Soc.,
A standard reaction performed between (a) and (1) in the presence
of radical quencher 2,2,6,6-tetramethylpyridine N-oxide (TEMPO)
led to drastic quenching of the product (1a) yield; suggesting a
radical pathway for this transformation. The results of the above
2
011, 133, 6541.
4
(a) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215; (b) E.
M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, Chem.
Rev., 2007, 107, 5318.
(a) D. Liu, C. Liu, H. Li and A. Lei, Chem. Commun., 2014, 50, 3623;
(b) Y. Zhu and Y. Wei, Chem. Sci., 2014, 5, 2379.
(a) G. Majji, S. Guin, A. Gogoi, S. K. Rout and B. K. Patel, Chem.
Commun., 2013, 49, 3031; (b) S.-r. Guo, Y.-q. Yuan and J.-n. Xiang,
Org. Lett., 2013, 15, 4654; (c) B. Tan, N. Toda and C. F. Barbas III,
Angew. Chem., Int. Ed., 2012, 51, 12538; (d) W. Wei, C. Zhang, Y. Xu
and X. Wan, Chem. Commun., 2011, 47, 10827; (e) L. Ma, X. Wang,
W. Yu and B. Han, Chem. Commun., 2011, 47, 11333; (f) M. Uyanik
and K. Ishihara, ChemCatChem, 2012, 4, 177.
K. Cheng, L. Huang and Y. Zhang, Org. Lett., 2009, 11, 2908.
S. K. Rout, S. Guin, A. Gogoi, M. Ganesh and B. K. Patel, Org. Lett.,
2014, 16, 1614.
8,13a
experiments and related literature reports
convey the operation of
5
6
following paths for the oxidative esterification. Styrene (1) in the
presence of TBAI/TBHP is converted to benzoic acid via the
intermediacy of phenylglyoxal and benzaldehyde (Scheme S1, see
ESI‡). To rule out the source of oxygen from molecular oxygen,
esterifications of 1,4-dioxane (a) with styrene (1) was carried out in
an argon atmosphere under anhydrous conditions. The reaction
proceeded smoothly giving product (1a) in identical yield suggesting
that the oxygen atom in ester/carboxylic acid is indeed originating
7
8
18
from TBHP only. The benzoic acid so generated is deprotonated to
3
give an anionic benzoate. In another path, radical abstraction of sp
9
(a) C. Singh, S. Chaudhary and S. K. Puri, Bioorg. Med. Chem. Lett.,
C−H α to ethereal oxygen in dioxane gives the radical intermediate
(
oxidation (SET) with iodine forming the oxonium species. In the
ultimate step, nucleophilic attack of benzoate ion on the α carbon of
oxonium species gives α acyloxy ether (1a) (Scheme 6). A similar
2
008, 18, 1436; (b) M. A. Huffman, J. H. Smitrovich, J. D. Rosen, G.
N. Boice, C. Qu, T. D. Nelson and J. M. McNamara, J. Org. Chem.,
005, 70, 4409.
W. J. Croxall, F. J. Glavis and H. T. Neher, J. Am. Chem. Soc., 1948,
0, 2805.
Scheme 6). This species then undergoes a further one electron
2
1
0
7
mechanism can be proposed involving ethyl acetate instead of cyclic 11 (a) D. J. Kopecky and S. D. Rychnovsky, J. Org. Chem., 2000, 65,
191; (b) Y. Zhang and T. Rovis, Org. Lett., 2004, 6, 1877.
ether.
In conclusion, we have developed a method for cyclic ethers to
esters and monoesters to diesters (gem-diacylates) under metal free
1
1
2
3
R. K. Summerbell and H. E. Lunk, J. Am. Chem. Soc., 1958, 80, 604.
(a) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Lei, K. Xu and X.
Wan, Chem. Eur. J., 2011, 17, 4085; (b) S. Priyadarshini, P. Amal, J.
Joseph and M. L. Kantam, RSC Adv., 2013, 3, 18283; (c) S. Zhang, Li.-
Na. Guo, H. Wang and X.-H. Duan, Org. Biomol. Chem., 2013, 11,
3
conditions cleaving sp C−H bonds in simple solvents like 1,4-
dioxane, tetrahydropyran, tetrahydrofuran and ethyl acetate with
terminal aryl alkenes and alkynes. The coupling partners are the in
−
situ generated ArCOO from styrenes and phenylacetylenes and the
4
308; (d) Z.-Q. Liu, L. Zhao, X. Shang and Z. Cui, Org. Lett., 2012, 14,
3218; (e) J. Zhao, H. Fang, W. Zhou, J. Han and Y. Pan, J. Org. Chem.,
2014, 79, 3847.
S. K. Rout, S. Guin, W. Ali, A. Gogoi and B. K. Patel, Org. Lett., 2014,
solvents (cyclic ethers and ethyl acetate). Conceptually C=C bond
cleavage of styrene to generate benzaldehyde can be considered as
substitute of ozonolysis
B. K. P acknowledges the support of this research by the
Department of Science and Technology (DST) (SB/S1/OC-53/2013),
New Delhi, and the Council of Scientific and Industrial Research
1
1
4
1
6, 3086.
5. (a) D. Kalyani and M. S. Sanford, Org. Lett., 2005, 7, 4149; (b) F.-R.
Gou, X.-C. Wang, P.-F. Huo, H.-P. Bi, Z.-H. Guan and Y.-M. Liang,
Org. Lett.,2009, 11, 5726; (c) X. Zheng, B. Song and B. Xu, Eur. J.
Org. Chem., 2010, 4376; (d) L. Wang, X.-D. Xia, W. Guo, J.-R. Chen
and W.-J. Xiao, Org. Biomol. Chem., 2011, 9, 6895; (e) R. K. Rit, R.
Yadav and A. K. Sahoo, Org. Lett., 2012, 14, 3724; (f) R. Yadav, R. K.
Rit and A. K. Sahoo, Chem. Eur. J., 2012, 18, 5541. (g) X. Chen, X.-S.
Hao, C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc., 2006, 128, 6790;
(
CSIR) (02(0096)/12/EMR-II).
Notes and References
1
For reviews of C−H bond activation see the following: (a) X.-S. Zhang,
K. Chen and Z.-J. Shi, Chem. Sci., 2014, 5, 2146; (b) I. D. G. Watson
and F. D. Toste, Chem. Sci., 2012, 3, 2899; (c) S. I. Kozhushkov and L.
Ackermann, Chem. Sci., 2013, 4, 886; (d) A. E. Nako, A. J. P. White
and M. R. Crimmin, Chem. Sci., 2013, 4, 691; (e) Y. Zhang, Q. Wu and
S. Cui, Chem. Sci., 2014, 5, 297; (f) T. Satoh and M. Miura, Chem. Eur.
J., 2010, 16, 11212; (g) X. Chen, K. M. Engle, D.-H. Wang and J.-Q.
Yu, Angew. Chem., Int. Ed., 2009, 48, 5094; (h) T. W. Lyons and M. S.
Sanford, Chem. Rev., 2010, 110, 1147; (i) L.-M. Xu, B.-J. Li, Z. Yang
and Z.-J. Shi, Chem. Soc. Rev., 2010, 39, 712; (j) D. A. Colby, R. G.
Bergman and J. A Ellman, Chem. Rev., 2010, 110, 624; (k) J. Wencel-
Delord, T. Droge, F. Liu and F. Glorius, Chem. Soc. Rev., 2011, 40,
(h) S. H. Kim, H. S. Lee, S. H. Kim and J. N. Kim, Tetrahedron Lett.,
2
2
008, 49, 5863; (i) A. Company and S. Enthaler, Chem. Soc. Rev.,
011, 40, 4912; (j) D. A. Alonso, C. Najera, I. M. Pastor and M. Yus,
Chem. Eur. J., 2010, 16, 5274; (k) V. S. Thirunavukkarasu, S. I.
Kozhushkov and L. Ackermann, Chem. Commun., 2014, 50, 29.
V. Kavala and B. K. Patel, Eur. J. Org. Chem., 2005, 441.
M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, Angew. Chem., Int.
Ed., 2011, 50, 5331.
1
1
6
7
1
8. (a) H. Jiang, H. Huang, H. Cao and C. Qi, Org. Lett., 2010, 12, 5561;
b) W.-T. Wei, R.-J. Song, X.-H. Ouyang, Y. Li, H.-B. Li and J.-H. Li,
(
Org. Chem. Front., 2014, 1, 484; (c) X.-H. Ouyang, R.-J. Song, Y. Li,
B. Liu and J.-H. Li, J. Org. Chem., 2014, 79, 4582.
4
2
1
740; (l) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev.,
011, 40, 5068; (m) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Rev., 2011,
11, 1293; (n) L. Ackermann, Chem. Rev., 2011, 111, 1315; (o) S. R.
Neufeldt and M. S. Sanford, Acc. Chem. Res., 2012, 45, 936; (p) K. M.
Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45,
7
88.
2
(a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (b) S. A. Girard, T.
Knauber and C.-J. Li, Angew. Chem., Int. Ed., 2014, 53, 74; (c) J. A.
Ashenhurst, Chem. Soc. Rev., 2010, 39, 540; (d) C. J. Scheuermann,
Chem. Asian J., 2010, 5, 436; (e) R. Samanta, K. Matcha and A. P.
Antonchick, Eur. J. Org. Chem., 2013, 5769; (f) X.-F. Wu, J.-L. Gong
and X. Qi, Org. Biomol. Chem., 2014, doi: 10.1039/C4OB00276H; (g)
Y. Wu, J. Wang, F. Mao and F. Y. Kwong, Chem. Asian J., 2014, 9, 26.
(a) H. M. L. Davies, J. D. Bois and J.-Q. Yu, Chem. Soc. Rev., 2011,
3
4
0, 1855; (b) D. H. Wang, K. M. Engle, B. F. Shi and J.-Q. Yu,
Science, 2010, 327, 315; (c) F. W. Patureau, T. Besset and F. Glorius,
Angew. Chem., Int. Ed., 2011, 50, 1064; (d) M. Brasse, J. Campora, J.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012