1066
E. SABURI ET AL.
4
. (a) Sandberg, M.; Sydnes, L.K. Tetrahedron Lett. 1998, 39, 6361. (b) Yadav,
J.S.; Reddy, B.V.S.; Reddy, G.S.K.K. Tetrahedron Lett. 2000, 41, 2695.
c) Sandbery, M.; Sydnes, L.K. Org. Lett. 2000, 2, 687. (d) Trost, B.M.;
(
Lee, C. J. Am. Chem. Soc. 2001, 123, 12191.
5
. Held, H.I.; Rengstle, A.; Mayer, D. In W. Gerhartz (Ed.), Ullmann’s Ency-
clopedia of Industrial Chemistry, 5th ed.; VCH: Weinheim, 1985, vol. A1,
p. 68.
6
. (a) Van Heerden, F.R.; Huyser, J.J.; Bardley, D.; Williams, G.; Holzapfel,
C.W. Tetrahedron Lett. 1998, 39, 5281. (b) Sandberg, M.; Sydness, L.K.
Tetrahedron Lett. 1998, 39, 6361.
7
8
9
. Yadav, J.S.; Subba Reddy, V.B.; Shrihari, P. Synlett. 2001, 673.
. Gregory, M.J. J. Chem. Soc. 1970, 1201.
. Zhang, Z-H.; Li, T-S.; Fu, C.-G. J. Chem. Res. Synop. 1997, 174.
FIG. 1. Reusability of Ce(SO4)2·4H2O for model reaction (color figure avail-
10. Zhang, X.; Li, L.; Zhang, G. Green Chem. 2003, 5, 646.
able online).
11. Ziyaei, A.; Azizi, N.; Saidi, M.R. J. Mol. Catal. A Chem. 2005, 238,
1
38.
the reaction time and yield. When 2-hydroxybenzaldehyde
1
2. Aggarwal, V.K.; Fonquerna, S.; Vennal, G.P. Synlett. 1998, 849.
and 4-hydroxybenzaldehyde were subjected to similar reaction 13. Chandra, K.L.; Saravanan, P.; Singh, V.K. Synlett. 2000, 359.
conditions, the hydroxyl group was also acetylated to afford the 14. Deka, N.; Kalita, D.J.; Borah, R.; Sarma, J.C. J. Org. Chem. 1997, 62,
1
563.
corresponding triacetates in excellent yields. A plausible mech-
anism for this reaction using Brønsted acidic ionic liquid as
catalyst has been shown by Hajipour et al.
Reusability of the catalyst was also investigated. For this
1
5. Aggen, D.H.; Arnold, J.N.; Hayes, P.D.; Smoter, N.J.; Mohan, R.S. Tetra-
hedron 2004, 60, 3675.
6. Niknam, K.; Saberi, D.; Nouri Sefat, M. Tetrahedron Lett. 2009, 50,
4058.
[
17]
1
purpose, the same model reaction was again studied under op- 17. Hajipour, A.R.; Khazdooz, L.; Ruoho, A.E. Catal. Commun. 2008, 9,
8
9.
timized conditions. After the completion of the reaction, hot
ethanol was added. The catalyst was separated by simple filtra-
tion, dried at 50 C under vacuum for 2 h, and reused for a similar
reaction. As shown in Figure 1, the catalyst could be used at least
five times with only slight reduction in its catalytic activity.
1
1
2
8. Olah, G.A.; Mehrotra, A.K. Synthesis 1982, 962.
9. Chakraborti, A.K.; Thilagavathi, R.; Kumar, R. Synthesis 2004, 831.
0. (a) Clark, J. H. (Ed.), Catalysis of Organic Reactions by Supported
Reagents; VCH: New York, 1994, pp. 35–68. (b) Sheldon, R. A.; Van
Bekkum, H. (Eds.), Catalysis Through Heterogeneous Catalysis; Wiley-
VCH: Weinheim, Germany, 2002. (c) Corma, A. Chem. Rev. 1995, 95, 559.
◦
(
d) Okuhara, T. Chem. Rev. 2002, 102, 3641.
CONCLUSION
21. Selvam, N.P.; Perumal, P.T. Tetrahedron Lett. 2006, 47, 7481.
2
2
2. He, L.; Horiuchi, C.A. Appl. Organometal. Chem. 1999, 13, 867.
3. Itoh, K.; Takahashi, S.; Ueki, T.; Sugiyama, T.; Takahashi, T.T.; Horiuchi,
C.A. Tetrahedron Lett. 2002, 43, 7035.
An efficient and important catalytic activity of cerium(IV)
sulfate (cheap, easily available, and reusable inorganic solid
acid catalyst) has been studied for the protection of aryl aldehy-
des as 1,1-diacetates using acetic anhydride under solvent-free
conditions. The catalyst can be reused after a simple workup,
with only slight reduction in the catalytic activity. High to excel-
lent yields, ease of workup, mild reaction conditions, very short
reaction times, and environmentally friendly procedure without
use of any solvent are features of this new procedure.
2
4. Horiuchi C.A.; Fukushima, T.; Furuta, N.; Chai, W.; Ji, S.; Saito, Y.;
Hashimoto, C.; Takahashi, T.T.; Sugiyama, T.; Muto, A.; Sakata, Y.; Nozaki,
S. J. Chem. Res. 2003, 270.
2
5. (a) Davoodnia, A.; Bakavoli, M.; Barakouhi, G.; Tavakoli-Hoseini, N. Chin.
Chem. Lett. 2007, 18, 1483. (b) Davoodnia, A.; Roshani, M.; Malaeke, S.H.;
Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. (c) Davoodnia, A.; Heravi,
M.M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Monatsh. Chem. 2009,
140, 1499. (d) Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.;
Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. (e) Davoodnia, A.;
Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Monatsh.
Chem. 2010, 141, 867. (f) Davoodnia, A.; Heravi, M.M.; Safavi-Rad, Z.;
Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. (g) Davoodnia, A.;
Heravi, M.M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Chin. J. Chem.
2010, 28, 429. (h) Davoodnia, A.; Allameh, S.; Fakhari, A.R.; Tavakoli-
Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. (i) Davoodnia, A.; Tavakoli-
Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32,
635. (j) Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M.M.; Tavakoli-
Hoseini, N.; Khojastehnezhad, A.; Zamani, H.A. Bull. Korean Chem. Soc.
2011, 32, 656.
REFERENCES
1
2
3
. Green, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 3rd ed.;
Wiley: New York, 1999.
. Kochhar, K.S.; Bal, B.S.; Deshpande, R.P.; Rajadyaksha, S.N.; Pinnick,
H.W. J. Org. Chem. 1983, 48, 1765.
. (a) Sudhakar, R.G.; Radhika, R.; Parvathi, N.; Iyengar, D.S. Indian J. Chem.
2
002, 41B, 863. (b) Reddy, M.A.; Reddy, L.R.; Bhanumathi, N.; Rao, R.K.
Synth. Commun. 2002, 32, 273. (c) Jin, T.S.; Sun, X.; Li, T.S. J. Chem. Res.
s.) 2000, 128.
(