Chemistry of Materials
Page 10 of 12
Schaak, R. E. Highly Active Electrocatalysis of the Hydrogen
(25) Ye, E.; Zhang, S.-Y.; Lim, S. H.; Bosman, M.; Zhang, Z.;
Win, K. Y.; Han, M.-Y. Ternary Cobalt–Iron Phosphide
Nanocrystals with Controlled Compositions, Properties, and
Morphologies from Nanorods and Nanorice to Split
Nanostructures. Chem. – Eur. J. 2011, 17, 5982-5988.
(26) Aiken Iii, J. D.; Lin, Y.; Finke, R. G. A Perspective on
Nanocluster Catalysis: Polyoxoanion and (n-C4H9)4N+
Stabilized Ir(0)∼300 Nanocluster ‘Soluble Heterogeneous
Catalysts’. J. Mol. Catal. A: Chem. 1996, 114, 29-51.
1
2
3
4
5
6
7
8
Evolution Reaction by Cobalt Phosphide Nanoparticles. Angew.
Chem. Int. Ed. 2014, 53, 5427-5430.
(11) Xiao, P.; Sk, M. A.; Thia, L.; Ge, X.; Lim, R. J.; Wang, J.-Y.;
Lim, K. H.; Wang, X. Molybdenum Phosphide as an Efficient
Electrocatalyst for the Hydrogen Evolution Reaction. Energy
Environ. Sci. 2014, 7, 2624-2629.
(12) Oyama, S. T. Novel Catalysts for Advanced
Hydroprocessing: Transition Metal Phosphides. J. Catal. 2003,
216, 343-352.
9
(27) Sénateur, J. P.; Rouault, A.; L'Héritier, P.; Krumbügel-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) Sun, F.; Wu, W.; Wu, Z.; Guo, J.; Wei, Z.; Yang, Y.; Jiang,
Z.; Tian, F.; Li, C. Dibenzothiophene Hydrodesulfurization
Activity and Surface Sites of Silica-Supported MoP, Ni2P, and
NiMoP Catalysts. J. Catal. 2004, 228, 298-310.
Nylund, A.; Fruchart, R. Fruchart, D.; Convert, P.; Roudaut, E.,
La Selectivite des Substitutions dans les Phases MM'P Etude de
L'ordre par Diffraction Neutronique dans NiCoP. Mater. Res.
Bull. 1973, 8, 229-238.
(14) Burns, A. W.; Gaudette, A. F.; Bussell, M. E.
Hydrodesulfurization Properties of Cobalt–Nickel Phosphide
Catalysts: Ni-Rich Materials are Highly Active. J. Catal. 2008,
260, 262-269.
(28) Fruchart, R.; Roger, A.; Senateur, J. P. Crystallographic
and Magnetic Properties of Solid Solutions of the Phosphides
M2P, M = Cr, Mn, Fe, Co, and Ni. J. Appl. Phys. 1969, 40, 1250-
1257.
(15) Ding, L.; Shu, Y.; Wang, A.; Zheng, M.; Li, L.; Wang, X.;
Zhang, T. Preparation and Catalytic Performances of Ternary
Phosphides NiCoP for Hydrazine Decomposition. Appl. Catal., A
2010, 385, 232-237.
(29) Fruchart, R. Effets d'Electronegativite et Interactions
Metalliques dans les Phosphures et Arseniures Ternaires des
Elements de Transition 3d, 4d, 5d de Type Metallique. Ann.
Chim. Fr. 1982, 7, 563-604.
(16) Lu, A.; Chen, Y.; Li, H.; Dowd, A.; Cortie, M. B.; Xie, Q.;
Guo, H.; Qi, Q.; Peng, D.-L. Magnetic Metal Phosphide
Nanorods as Effective Hydrogen-Evolution Electrocatalysts. Int.
J. Hydrogen Energy 2014, 39, 18919-18928.
(30) Artigas, M.; Bacmann, M.; Boursier, D.; Fruchart, D.;
Fruchart, R.; Soubeyroux, J. L. Formation of Diamagnetic Metal
Clusters in the Metallic System Nickel Phosphide (Ni2P)-Cobalt
Phosphide (Co2P). Comptes Rendus de l'Academie des Sciences,
Serie II: Mecanique, Physique, Chimie, Sciences de la Terre et de
l'Univers 1992, 315, 29-34.
(17) Abu, I. I.; Smith, K. J. The Effect of Cobalt Addition to
Bulk MoP and Ni2P Catalysts for the Hydrodesulfurization of 4,
6-Dimethyldibenzothiophene. J. Catal. 2006, 241, 356-366.
(18) Park, J.; Koo, B.; Yoon, K. Y.; Hwang, Y.; Kang, M.; Park,
J.-G.; Hyeon, T. Generalized Synthesis of Metal Phosphide
Nanorods via Thermal Decomposition of Continuously
Delivered Metal−Phosphine Complexes Using a Syringe Pump.
J. Am. Chem. Soc. 2005, 127, 8433-8440.
(31) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic
Chemistry: Principles of Structure and Reactivity; 4th ed.; Harper
Collins College Publishers: NY, 1993.
(32) Maeda, Y.; Takashima, Y. Mössbauer Studies of FeNiP and
Related Compounds. J. Inorg. Nucl. Chem. 1973, 35, 1963-1969.
(33) Gaudette, A. F.; Burns, A. W.; Hayes, J. R.; Smith, M. C.;
Seda, T.; Bussell, M. E. Mössbauer Spectroscopy Investigation
and Hydrodesulfurization Properties of Iron–Nickel Phosphide
Catalysts. J. Catal. 2010, 272, 18-27.
(19) Henkes, A. E.; Vasquez, Y.; Schaak, R. E. Converting
Metals into Phosphides:ꢀ A General Strategy for the Synthesis of
Metal Phosphide Nanocrystals. J. Am. Chem. Soc. 2007, 129,
1896-1897.
(34) Chiang, R.-K.; Chiang, R.-T. Formation of Hollow Ni2P
Nanoparticles Based on the Nanoscale Kirkendall Effect. Inorg.
Chem. 2006, 46, 369-371.
(20) Muthuswamy, E.; Savithra, G. H. L.; Brock, S. L. Synthetic
Levers Enabling Independent Control of Phase, Size, and
Morphology in Nickel Phosphide Nanoparticles. ACS Nano 2011,
5, 2402-2411.
(35) Ha, D.-H.; Moreau, L. M.; Bealing, C. R.; Zhang, H.;
Hennig, R. G.; Robinson, R. D. The Structural Evolution and
Diffusion During the Chemical Transformation from Cobalt to
Cobalt Phosphide Nanoparticles. J. Mater. Chem. 2011, 21, 11498-
11510.
(21) Mobarok, M. H.; Luber, E. J.; Bernard, G. M.; Peng, L.;
Wasylishen, R. E.; Buriak, J. M. Phase-Pure Crystalline Zinc
Phosphide Nanoparticles: Synthetic Approaches and
Characterization. Chem. Mater. 2014, 26, 1925-1935.
(22) Layan Savithra, G. H.; Bowker, R. H.; Carrillo, B. A.;
Bussell, M. E.; Brock, S. L. Mesoporous Matrix Encapsulation for
the Synthesis of Monodisperse Pd5P2 Nanoparticle
Hydrodesulfurization Catalysts. ACS Appl. Mater. Interfaces
2013, 5, 5403-5407.
(36) Korányi, T. Phosphorus Promotion of Ni (Co)-Containing
Mo-Free Catalysts in Thiophene Hydrodesulfurization. Appl.
Catal., A 2003, 239, 253-267.
(37) Practical Surface Analysis by Auger and X-ray
Photoelectron Spectroscopy; Briggs, D.; Seah, M. P., Eds.; John
Wiley & Sons: NY, 1983; Appendix 4, pp 477-533.
(38) Blanchard, P. E. R.; Grosvenor, A. P.; Cavell, R. G.; Mar, A.
X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich
Phosphides M2P and M3P (M = Cr−Ni). Chem. Mater. 2008, 20,
7081-7088.
(23) Layan Savithra, G. H.; Muthuswamy, E.; Bowker, R. H.;
Carrillo, B. A.; Bussell, M. E.; Brock, S. L. Rational Design of
Nickel Phosphide Hydrodesulfurization Catalysts: Controlling
Particle Size and Preventing Sintering. Chem. Mater. 2013, 25,
825-833.
(39) Sawhill, S. J.; Layman, K. A.; Van Wyk, D. R.; Engelhard,
M. H.; Wang, C.; Bussell, M. E. Thiophene
(24) Yoon, K. Y.; Jang, Y.; Park, J.; Hwang, Y.; Koo, B.; Park, J.-
G.; Hyeon, T. Synthesis of Uniform-Sized Bimetallic Iron–Nickel
Phosphide Nanorods. J. Solid State Chem. 2008, 181, 1609-1613.
Hydrodesulfurization over Nickel Phosphide Catalysts: Effect
10
ACS Paragon Plus Environment