110
P. Zhu, H.-M. Li / Journal of Molecular Structure 992 (2011) 106–110
experimental conditions. The emission of complex is red-shifted
about 21 nm compared to that of free ligand TPA. Obviously, this
strong emission come from the heterocyclic carboxylic acid ligand,
and the large red-shift effect may be attributed to the coordination
or an excited state of a metal-perturbing intraligand. That is, both
the rigidity of conjugated ring and the conjugation effect of ligand
were increased after coordination. It plays the main role to lumi-
nescence intensity and red-shift effect. Complex 1 is air-stable
and insoluble in water and common organic solvents. This coordi-
nation polymer may be excellent candidate for potential photolu-
minescence material because they are highly thermally stable.
4. Conclusions
In conclusion, a novel 2D layer complex [Mn(TPA)Cl(H2O)]n (1)
was prepared by two methods through employing heterocyclic ni-
trile or heterocyclic carboxylic acid ligands under hydrothermal
conditions. We studied here the structure, TGA and fluorescence
properties of the coordination polymer. This material provides a
new impetus to construction of novel functional material with
potentially useful physical properties.
Fig. 6. The TGA curve for complex 1.
References
[1] R. Owen, W. Lin, Acc. Chem. Res. 35 (2002) 511.
[2] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 43 (2004) 2334.
[3] L. Carlucci, G. Ciani, D.M. Proserpio, Coord. Chem. Rev. 246 (2003) 247.
[4] H. Li, M. Eddaoudi, M. O‘Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
[5] S.S. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283
(1999) 1148.
[6] G.S. Papaefstathiou, L.R. MacGillivray, Coord. Chem. Rev. 246 (2003) 169.
[7] C.D. Wu, A. Hu, L. Zhang, W.B. Lin, J. Am. Chem. Soc. 127 (2005) 8940.
[8] J. Yang, Q. Yuo, G.D. Li, J.J. Cao, G.H. Li, J.S. Chen, Inorg. Chem. 45 (2006) 2857.
[9] J.L.C. Rowsell, O.M. Yaghi, J. Am. Chem. Soc. 128 (2006) 1304.
[10] B.L. Chen, N.W. Ockwig, A.R. Millward, D.S. Contreras, O.M. Yaghi, Angew.
Chem., Int. Ed. 44 (2005) 4745.
[11] M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, Chem. Res. 34 (2001)
319.
[12] X.S. Wang, Y.Z. Tang, X.F. Huang, Z.R. Qu, C.M. Che, P.W.H. Chan, R.G. Xiong,
Inorg. Chem. 44 (2005) 5278.
[13] Q. Ye, X.S. Wang, H. Zhao, R.G. Xiong, Chem. Soc. Rev. 34 (2005) 208.
[14] L. Pan, N. Ching, X.Y. Huang, J. Li, Inorg. Chem. 40 (2001) 1271.
[15] M.T. Caudle, J.W. Kampf, M.L. Kirk, P.G. Rasmussen, V.L. Pecoraro, J. Am. Chem.
Soc. 119 (1997) 9297.
Fig. 7. Fluorescent emission spectra of the compound 1 and free TPA ligand.
[16] C.F. Wang, E.Q. Gao, Z. He, C.H. Yan, Chem. Commun. (2004) 720.
[17] Y.L. Wang, D.Q. Yuan, W.H. Bi, X. Li, X.J. Li, F. Li, R. Cao, Cryst. Growth Des. 5
(2005) 1849.
[18] A. Panagiotis, W.K. Jeff, L.P. Vincent, Inorg. Chem. 44 (2005) 3626.
[19] F. Nouar, J.F. Eubank, T. Bousquet, L. Wojtas, M.J. Zaworotko, M. Eddaoudi, J.
Am. Chem. Soc. 130 (2008) 1833.
with the carboxyl O1A atom and terminal Cl1 atom. Thus the 3-D
network structure was obtained by those H-bonds to bridge the
2D layer networks (Fig. 5).
[20] H. Zhao, Z.R. Qu, H.Y. Ye, R.G. Xiong, Chem. Soc. Rev. 37 (2008) 84.
[21] Q. Ye, Y.M. Song, G.X. Wang, K. Chen, D.W. Fu, P.W. Hong Chan, J.S. Zhu, S.P.
Huang, R.G. Xiong, J. Am. Chem. Soc. 128 (2006) 6554.
[22] M. Dinca, A.F. Yu, J.R. Long, J. Am. Chem. Soc 128 (2006) 8904.
[23] T. Wu, M. Chen, D. Li, Eur. J. Inorg. Chem. (2006) 2132.
[24] X. He, C.Z. Lu, D.Q. Yuan, Inorg. Chem. 45 (2006) 5760.
[25] X.M. Zhang, Y.F. Zhao, H.S. Wu, S.R. Batten, S.W. Ng, Dalton Trans. (2006) 3170.
[26] J.P. Geng, Z.X. Wang, Q.F. Wu, M.X. Li, H.P. Xiao, Z. Anorg. Allg. Chem. 637
(2011) 301.
[27] Z.X. Wang, X.L. Li, T.W. Wang, Y.Z. Li, S.I. Ohkoshi, K. Hashimoto, Y. Song, X.Z.
You, Inorg. Chem. 46 (2007) 10990.
[28] T.T. Luo, H.L. Tsai, S.L. Yang, Y.H. Liu, R.D. Dayal Yadav, C.C. Su, C.H. Ueng, L.G.
Lin, K.L. Lu, Angew. Chem., Int. Ed. 44 (2005) 6063.
3.3. Thermogravimetric analysis
The TGA curve shows that the complex 1 begins to decompose
at 135 °C displaying two stages of mass loss (Fig. 6). The first
weight loss of 5.89% (calc 5.76%) from 135 to 240 °C is consistent
with the release of a coordinated water molecule. The degradation
of the TPA occurs in the second step above 335 °C. Due to decom-
position of the network, the total observed weight loss at 750 °C is
76.12%, and the final presumably residual is Mn3O4. It is concluded
that the framework is very stable and worthy of further investiga-
tion as candidate of thermally stable material.
[29] C.W. Yeh, M.C. Suen, H.L. Hu, J.D. Chen, J.C. Wang, Polyhedron 23 (2004) 1947.
[30] N.J. Long, Angew. Chem., Int. Ed. 34 (1995) 21.
[31] B. Yan, Q.Y. Xie, J. Coord. Chem. 56 (2003) 1289.
3.4. Photoluminescent properties
[32] B.L. Li, B.Z. Li, X. Zhu, X.H. Lu, Y. Zhang, J. Coord. Chem. 57 (2004) 1361.
[33] J.Y. Lu, E.E. Kohler, Inorg. Chem. Commun. 5 (2002) 600.
[34] W. Lin, O.R. Evans, R.G. Xiong, Z. Wang, J. Am. Chem. Soc. 120 (1998) 13272.
[35] D.W. Fu, J.Z. Ge, J. Dai, H.Y. Ye, Z.R. Qu, Inorg. Chem. Commun. 12 (2009) 994.
[36] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University
of Göttingen, Germany, 1997.
[37] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement,
University of Göttingen, Germany, 1997.
[38] T.A. Balaban, From Chemical Topology to Three-dimensional Geometry,
Plenum Press, NewYork, 1997.
The solid-state fluorescent property of the complex was inves-
tigated at room temperature. As illustrated in Fig. 7, upon excita-
tion of the solid sample at k = 335 nm, the intense broad
emission bands at 396 nm was observed. Moreover, for excitation
wavelength between 280 and 380 nm, the free TPA ligand presents
a weak photoluminescence emission at 375 nm under the same