Synthesis Gas Production
J. Phys. Chem. B, Vol. 104, No. 27, 2000 6467
References and Notes
decomposition of a surface intermediate formed between
chemisorbed molecular O2 and adsorbed C: this hot CO, with
an equivalent temperature of ∼11,000 K,10 would need to be
accounted for in the modeling of the reaction in a standard
catalytic reactor. As the surface temperature is lowered, two
new factors come into play. First, the hot CO released onto the
potential energy surface for chemisorbed CO by decomposition
of the O2C reaction intermediate exchanges energy with the
surface, as the surface temperature is lowered to <650 K, and
becomes thermally accommodated to the surface: it can
subsequently desorb as CO or react with adsorbed O to form
CO2. Second, the surface reaction between O and C adatoms
becomes more effective in the production of adsorbed, thermally
equilibrated CO; as the temperature is lowered, the CO lifetime
on the surface increases, the reaction with adsorbed O takes
over, and the dominant product becomes CO2.
One important difference with our previous study of O2
interacting with preadsorbed C is noted. At temperatures
between 350 and 400 K, the stable surface species formed from
methane dissociation is CH.21 Watson et al.20 have shown that
this CH species, at low surface temperatures, is more reactive
to coadsorbed Oa than C. This alternative reaction pathway has
not been accounted for in the present work.
(1) Stacey, M. H. Catalysis (London) 1990, 3, 1998.
(2) Kang, H. H. Catal. ReV. Sci. Eng. 1981, 22, 235.
(3) Fischer, F.; Tropsch, H. Brennst.-Chem. 1926, 7, 197; Chem. Ber.
1926, 59, 830.
(4) Prettre, M.; Eichner, C.; Perri, M. Trans. Faraday Soc. 1946, 43,
335.
(5) Tornianen, P. M.; Chu, X.; Schmidt, L. D. J. Catal. 1994, 146, 1.
(6) Hickman, D. A.; Schmidt, L. D. ACS Symposium Series 1993, 523,
416; Aiche 1993, 39, 1164; Science 1993, 259, 343.
(7) Walker, A. V.; Klo¨tzer, B.; King, D. A. J. Chem. Phys. 1998, 109,
6879.
(8) Walker, A. V.; King, D. A. Phys. ReV. Lett. 1999, 82, 5156.
(9) Walker, A. V.; King, D. A. Surf. Sci. 2000, 444, 1.
(10) Walker, A. V.; King, D. A. J. Chem. Phys. 2000, 112, 1937.
(11) Quinlan, M. A.; Wood, B. J.; Wise, H. Chem. Phys. Lett. 1985,
118, 478.
(12) Krishnan, G.; Wise, H. Appl. Surf. Sci. 1989, 37, 244.
(13) Alstrup, I.; Chorkendorff, I.; Ullmann, S. Surf. Sci. 1990, 234,
79.
(14) Valden, M.; Xiang, N.; Pere, J.; Pessa, M. Appl. Surf. Sci. 1996,
99, 83.
(15) Hopkinson, A.; Guo, X.-C.; Bradley, J. M. J. Chem. Phys. 1993,
99, 8262.
(16) Hoffmann, P.; Bare, S. R.; King, D. A. Surf. Sci. 1982, 117,
245.
(17) Wilf, M.; Dawson, P. T. Surf. Sci. 1977, 65, 399.
(18) Lee, J. H.; Trimm, D. L. Fuel Proc. Technol. 1995, 42, 339.
(19) Hellsing, B.; Kasemo, B.; Zhdanov, V. P. J. Catal. 1991, 132,
210.
(20) Watson, D. T. P.; van Dijk, J.; Harris, J.; King, D. A., to be
published.
(21) Watson, D. T. P.; Titmuss, S.; King, D. A., submitted for publica-
tion.
(22) Lombardo, J.; Fink, T.; Imbihl, R. J. Chem. Phys. 1993, 98, 5526.
(23) Gruyters, M.; Pasteur, A. T.; King, D. A. J. Chem. Soc., Faraday
Trans. 1996, 92, 2941.
(24) Gruyters, M.; Ali, T.; King, D. A. J. Phys. Chem. 1996, 100, 14417.
(25) Hopkinson, A.; King, D. A. Chem. Phys. 1993, 177, 433.
(26) McCabe, R. W.; Schmidt, L. D. Surf. Sci. 1976, 60, 85.
(27) Numerical Recipes in C: the Art of Scientific Computing, 2nd Ed.;
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Eds.;
Cambridge University Press: New York, 1992; p 710.
(28) Oakes, D. J.; Newell, H. E.; Rutten, F. J. M.; McCoustra, M. R.
S.; Chesters, M. A. J. Vac. Sci. Technol. A 1996, 14, 1439.
(29) Zaera, F.; Hoffmann, H. J. Phys. Chem. 1991, 95, 6397.
We have formulated a Langmuir-Hinshelwood mechanism,
using a mean-field approach, to model the reaction. Although
the model provides a good description of the steady-state
selectivity of the reaction to CO or CO2 and the overall reaction
probability and a reasonably good description of the temporal
evolution of the products, it has its limitations. In particular,
the model does not account for the production of prompt CO,
nor does it account, in its present form, for the presence of CH
on the surface.
Acknowledgment. We acknowledge EPSRC for an equip-
ment grant, Shell Research and Technology Centre, Amsterdam,
for a studentship (A.V.W), and support from and discussions
with Professor Gert Jan Kramer.