ChemComm
Communication
Fig. 1a shows TOFH as a function of Pt particle size over Pt@MIL-101 (i.e., Pt NPs immobilized inside the pores of MIL-101)
2
Pt/CNTs-O-HT catalysts as well as TOFH of Pt/CNTs-O at 30 1C. It is catalyst. The higher activity of the Pt/CNTs-O-HT catalyst could be
2
expected that at the identical Pt particle size, the defect-rich CNTs- related to not only the unique textural properties of the support,
O-HT immobilized Pt nanocatalysts exhibit much higher TOFH
which have no mass-transfer limitations and good capacity
2
compared to Pt/CNT nanocatalysts, while the oxygen group-rich as electron reservoirs, but also the distinct surface chemistry.
CNTs-O immobilized Pt nanocatalyst shows much lower TOFH . As illustrated in Scheme 1, the electron-deficient defects on CNTs
2
This again verifies the fact that the surface oxygen groups and effectively transfer the electrons from Pt to carbon supports and thus
defects on CNTs are detrimental and beneficial to the Pt catalysis, promote AB hydrolysis reaction to generate more H2, while the
respectively. Moreover, TOFH of Pt/CNTs-O-HT increases with Pt electron-rich oxygen groups reversely transfer electrons from carbon
2
particle size to a maximum, i.e., B567 molH molPtÀ1 minÀ1, at the supports to Pt and thus inhibit the reaction.
2
mean size of B1.3 nm followed by a decline with a further increase
In summary, we have demonstrated the defects not the oxygen
in the size, indicating a significant structure sensitivity for AB groups on CNTs responsible for the improved Pt catalytic activity in AB
hydrolysis over Pt/CNTs-O-HT catalysts. To our knowledge, this is hydrolysis. It is a facile and effective method to introduce a number of
the first study by manipulating the surface chemistry of CNTs and defects on CNTs by acid oxidation and subsequent high temperature
Pt particle size to remarkably enhance the activity in AB hydrolysis, treatments. Such defect-rich CNTs-O-HT support immobilized Pt nano-
which will help future work on the catalyst design of Pt/C and the catalysts are highly active, and the optimum sized Pt catalyst shows an
reaction mechanism.
unprecedented H2 generation activity up to B567 molH molPtÀ1 minÀ1
2
Table 1 displays a comparison of the activities of Pt/CNTs-O- at 30 1C. The methodology reported here could be applicable for bi- or
HT with various Pt-based catalysts taken from the literature. multi-metallic and other metallic catalysts.
Clearly, the as-prepared Pt/CNTs-O-HT catalyst shows superior
This work was financially supported by the Natural Science
activity, and in particular B2.1 times higher TOFH at 25 1C Foundation of China (21306046 and 21276077) and the 111
2
than the most active supported Pt catalyst (i.e., Pt/g-Al2O3) Project of Ministry of Education of China (B08021).
reported so far as well as slightly higher than the 2.0 wt%
Notes and references
Table 1 Activities of various Pt-based catalysts for AB hydrolysis
1 (a) L. Schlapbach and A. Zuttel, Nature, 2001, 414, 353;
(b) W. Grochala and P. P. Edwards, Chem. Rev., 2004, 104, 1283;
(c) S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, Catal.
Today, 2007, 120, 246; (d) A. W. C. van den Berg and C. O. Arean,
Chem. Commun., 2008, 668; (e) U. Eberle, M. Felderhoff and
F. Schuth, Angew. Chem., Int. Ed., 2009, 48, 6608.
2 (a) T. B. Marder, Angew. Chem., Int. Ed., 2007, 46, 8116; (b) B. Peng
and J. Chen, Energy Environ. Sci., 2008, 1, 479; (c) C. W. Hamilton,
R. T. Baker, A. Staubitz and I. Manners, Chem. Soc. Rev., 2009,
38, 279; (d) U. B. Demirci and P. Miele, Energy Environ. Sci., 2009,
2, 627; (e) H. L. Jiang, S. K. Singh, J. M. Yan, X. B. Zhang and Q. Xu,
ChemSusChem, 2010, 3, 541; ( f ) M. Yadav and Q. Xu, Energy Environ.
Sci., 2012, 5, 9698.
3 M. Chandra and Q. Xu, J. Power Sources, 2007, 168, 135.
4 O. Metin, V. Mazumder, S. Ozkar and S. H. Sun, J. Am. Chem. Soc.,
2010, 132, 1468.
5 S. F. Li, Y. H. Guo, W. W. Sun, D. L. Sun and X. B. Yu, J. Phys. Chem.
C, 2010, 114, 21885.
6 F. Y. Cheng, H. Ma, Y. M. Li and J. Chen, Inorg. Chem., 2007, 46, 788.
7 C. F. Yao, L. Zhuang, Y. L. Cao, X. P. Ai and H. X. Yang, Int.
J. Hydrogen Energy, 2008, 33, 2462.
Catalyst
nmetal/nAB
T (1C)
TOF
567
Ref.
H2
Pt/CNTs-O-HT
Pt/CNTs-O-HT
Pt/g-Al2O3
Pt/g-Al2O3
Pt/CeO2
Pt/C
Pt black
PtO2
K2PtCl4
PtRu/C
0.0047
0.0047
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.03
30
25
30
25
25
25
25
25
25
25
25
25
25
This work
This work
3
3
18
19
19
19
19
7
468a
261
222
182
111
14
21
9
8b
Ni0.33@Pt0.67/C
Co0.32Pt0.68/C
Pt@MIL-101
0.018
0.038
0.0029
81b
67b
414
8
9
20
a
b
Obtained from the data in Fig. S6 (ESI). Estimated from the slope of
the fitting line.
8 X. J. Yang, F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen, Int.
J. Hydrogen Energy, 2011, 36, 1984.
9 X. J. Yang, F. Y. Cheng, Z. L. Tao and J. Chen, J. Power Sources, 2011,
196, 2785.
10 M. Wen, S. Q. Zhou, Q. S. Wu, J. Y. Zhang, Q. N. Wu, C. X. Wang and
Y. Z. Sun, J. Power Sources, 2013, 232, 86.
11 M. Chandra and Q. Xu, J. Power Sources, 2006, 156, 190.
12 Y. H. Zhang, M. L. Toebes, A. van der Eerden, W. E. O’Grady, K. P. de
Jong and D. C. Koningsberger, J. Phys. Chem. B, 2004, 108, 18509.
13 D. S. Su, S. Perathoner and G. Centi, Chem. Rev., 2013, 113, 5782.
14 J. Zhu, A. Holmen and D. Chen, ChemCatChem, 2013, 5, 378.
15 Q. Xu and M. Chandra, J. Power Sources, 2006, 163, 364.
16 X. M. Wang, N. Li, J. A. Webb, L. D. Pfefferle and G. L. Haller, Appl.
Catal., B, 2010, 101, 21.
17 I. Fampiou and A. Ramasubramaniam, J. Phys. Chem. C, 2012, 116, 6543.
18 X. Wang, D. P. Liu, S. Y. Song and H. J. Zhang, Chem. Commun.,
2012, 48, 10207.
19 Q. Xu and M. Chandra, J. Alloys Compd., 2007, 446–447, 729.
20 A. Aijaz, A. Karkamkar, Y. J. Choi, N. Tsumori, E. Ronnebro,
T. Autrey, H. Shioyama and Q. Xu, J. Am. Chem. Soc., 2012,
134, 13926.
Scheme 1 Possible pathway for the hydrolytic dehydrogenation of AB
over two kinds of Pt particles immobilized on close CNT supports. Note:
higher (yellow) and lower (brown) binding energy of Pt 4f.
2144 | Chem. Commun., 2014, 50, 2142--2144
This journal is ©The Royal Society of Chemistry 2014