Page 7 of 8
Catalysis Science & Technology
Please do not adjust margins
Journal Name
ARTICLE
Phys. Chem. Chem. Phys., 2001, 3, 1108-1113.
Conclusions
DOI: 10.1039/C6CY00271D
13 K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno and T. Funabiki,
J. Phys. Chem. B, 2004, 108, 346-354.
14 H. Tsuneoka, K. Teramura, T. Shishido and T. Tanaka, J. Phys.
Chem. C, 2010, 114, 8892-8898.
15 K. Teramura, S. Iguchi, Y. Mizuno, T. Shishido and T. Tanaka,
Angew. Chem. Int. Ed., 2012, 51, 8008-8011.
16 S. Iguchi, K. Teramura, S. Hosokawa and T. Tanaka, Catal.
Today, 2015, 251, 140-144.
17 S. Iguchi, K. Teramura, S. Hosokawa and T. Tanaka, Phys.
Chem. Chem. Phys., 2015, 17, 17995-18003.
18 K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata and T. Tanaka,
Chem. A Euro. J., 2014, 20, 9906-9909.
19 Z. Wang, K. Teramura, Z. Huang, S. Hosokawa, Y. Sakata and
We found that the Ag cocatalyst-loaded ZnTa2O6
photocatalyst showed activity for the conversion of CO2 into
CO in an aqueous NaHCO3 solution under UV irradiation. After
5 h of photoirradiation of Ag-loaded ZTO_1273 (3 wt.%), the
amount of CO evolved was 109.3 μmol and the selectivity
toward CO evolution among the reduction products was 45.8%.
The formation of stoichiometric amounts of O2 indicates that
H2O can act both as an electron donor and a proton source for
this reaction. In contrast, Pt/ZTO_1273, which was prepared by
the photodeposition method, showed good overall water
splitting capabilities and over 700 μmol of H2 was produced
over 1 h of photoirradiation. Through control and isotopic
experiments, we concluded that CO evolved during the
photocatalytic conversion of CO2 in an aqueous NaHCO3
solution using the Ag cocatalyst-loaded ZnTa2O6 photocatalyst
originated from the CO2 introduced as a substrate. Calcination
at high temperatures altered both the chemical and structural
properties of ZnTa2O6 and improved the selectivity toward CO
evolution.
T.
10.1039/C5CY01280E.
Tanaka,
Catal.
Sci.
Technol.,
2015,
DOI:
20 Z. Ding, W. Wu, S. Liang, H. Zheng and L. Wu, Mater. Lett.,
2011, 65, 1598-1600.
21 G. B. Kunshina, I. V. Bocharova, O. G. Gromov, E. P. Lokshin
and V. T. Kalinnikov, Inorg. Mater., 2012, 48, 62-66.
22 A. V. B. M. Birdeanu, E. Fagadar-Cosma, C. Enache, I. Miron, I.
Grozescu, Dig. J. Nanomater. Bios., 2013, 8, 263-272.
23 T. H. Noh, I.-S. Cho, S. Lee, D. W. Kim, S. Park, S. W. Seo, C. W.
Lee and K. S. Hong, J. Am. Ceram. Soc., 2012, 95, 227-231.
24 M. Waburg and H. Müller-Buschbaum, Z. anorg. allg. Chem.,
1985, 522, 137-144.
Acknowledgements
25 H. Kato and A. Kudo, Chemical Phys. Lett., 1998, 295, 487-
492.
26 T. Takayama, K. Tanabe, K. Saito, A. Iwase and A. Kudo, Phys.
Chem. Chem. Phys., 2014, 16, 24417-24422.
27 E. A. Davis and N. F. Mott, Philos. Mag., 1970, 22, 0903-0922.
28 Z. Wang, K. Teramura, S. Hosokawa and T. Tanaka, J. Mater.
Chem. A, 2015, 3, 11313-11319.
29 K. Teramura, H. Tatsumi, Z. Wang, S. Hosokawa and T.
Tanaka, Bull. Chem. Soc. Jpn., 2015, 88, 431-437.
30 K. Iizuka, T. Wato, Y. Miseki, K. Saito and A. Kudo, J. Am.
Chem. Soc., 2011, 133, 20863-20868.
31 T. Takayama, A. Iwase and A. Kudo, Bull. Chem. Soc. Jpn.,
2015, 88, 538-543.
32 R. Kretzschmar, T. Mansfeldt, P. N. Mandaliev, K. Barmettler,
M. A. Marcus and A. Voegelin, Environ. Sci. Technol., 2012,
46, 12381-12390.
This study was partially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas "All Nippon Artificial
Photosynthesis Project for Living Earth" (No. 2406) of the
Ministry of Education, Culture, Sports, Science, and
Technology (MEXT) of Japan, the Precursory Research for
Embryonic Science and Technology (PRESTO), supported by
the Japan Science and Technology Agency (JST), and the
Program for Element Strategy Initiative for Catalysts &
Batteries (ESICB), commissioned by the MEXT of Japan. Shoji
Iguchi thanks the JSPS Research Fellowships for Young
Scientists.
33 S. K. Kurinec, P. D. Rack, M. D. Potter, and T. N. Blanton, J.
Mater. Res., 2000, 15, 1320-1323.
34 M. Waburg and H. Müller-Buschbaum, Z. anorg. allg. Chem.,
1984, 508, 55-60.
35 G. Busca and V. Lorenzelli, Mater. Chem., 1982, 7, 89-126.
References
1
2
3
W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Revi., 2011,
40, 3703-3727.
G. Centi, E. A. Quadrelli and S. Perathoner, Energy Environ.
36 T. Stimpfling and F. Leroux, Chem. Mater., 2010, 22, 974-987.
Sci., 2013,
E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal
6, 1711-1731.
and J. Perez-Ramirez, Energy Environ. Sci., 2013, 6, 3112-
3135.
4
5
6
7
8
9
M.-S. Fan, A. Z. Abdullah and S. Bhatia, ChemCatChem, 2009,
, 192-208.
A. Kubacka, M. Fernández-García and G. Colón, Chem. Rev.,
2012, 112, 1555-1614.
W. Fan, Q. Zhang and Y. Wang, Phys. Chem. Chem. Phys.,
2013, 15, 2632-2649.
Standard Potentials in Aqueous Solution, Marcel Dekker,
1985.
Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, Chem.
Commun., 1997, 841-842.
Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, Chem. Lett.,
1997, 26, 993-994.
1
10 Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, J. Chem. Soc.,
Faraday Trans., 1998, 94, 1875-1880.
11 Y. Kohno, T. Tanaka, T. Funabiki and S. Yoshida, Phys. Chem.
Chem. Phys., 2000, 2, 2635-2639.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins