6174; (b) L. N. Sun, H. J. Zhang, L. S. Fu, F. Y. Liu, Q. G. Meng,
C. Y. Peng and J. B. Yu, Adv. Funct. Mater., 2005, 15, 1041;
(c) K. Okada, M. Uekawa, Y. F. Wang, T. M. Chen and T. Nakaya, Chem.
Lett., 1998, 801; (d) J. Kido, K. Nagai and Y. Okamoto, J. Alloys
Compd., 1993, 192, 30; (e) M. R. Robinson, M. B. O’Regan and
G. C. Bazan, Chem. Commun., 2000, 1645; (f) L. D. Carlos,
R. A. S. Ferreira, V. D. Bermudez and S. J. L. Ribeiro, Adv. Mater., 2009,
21, 509; (g) K. Binnemans, Chem. Rev., 2009, 109, 4283.
2 (a) J. C. G. Bunzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048;
(b) N. Sabbatini, M. Guardigli and J. M. Lehn, Coord. Chem. Rev., 1993,
123, 201; (c) J. M. Lehn, Rep. Prog. Phys., 2004, 67, 249; (d) B. Alpha,
R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner and N. Sabbatini,
Photochem. Photobiol., 1990, 52, 299; (e) P. Lenaerts, K. Driesen,
R. Van Deun and K. Binnemans, Chem. Mater., 2005, 17, 2148.
3 H. R. Li, L. S. Fu, F. Y. Liu, S. B. Wang and H. J. Zhang, New J. Chem.,
2002, 26, 674.
4 (a) H. R. Li, N. N. Lin, Y. G. Wang, Y. Feng, Q. Y. Gan, H. J. Zhang,
Q. L. Dong and Y. H. Chen, Eur. J. Inorg. Chem., 2009, 519; (b) J. Feng,
J. B. Yu, S. Y. Song, L. N. Sun, W. Q. Fan, X. M. Guo, S. Dang and
H. J. Zhang, Dalton Trans., 2009, 2406; (c) X. M. Guo, H. D. Guo,
L. S. Fu, H. J. Zhang, L. D. Carlos, R. P. Deng and J. B. Yu, J. Photo-
chem. Photobiol., A, 2008, 200, 318; (d) C. Sanchez, F. Ribot and
B. Lebeau, J. Mater. Chem., 1999, 9, 35.
5 (a) Y. J. Li and B. Yan, Inorg. Chem., 2009, 48, 8276; (b) Y. J. Li and
B. Yan, Dalton Trans., 2010, 39, 2554; (c) Y. J. Li and B. Yan, J. Mater.
Chem., 2011, 21, 8129.
formation [In(St/S0) = −k1t = −t/τ], indicating that all the lantha-
nide ions occupy the same average coordination environment.
The resulting luminescence lifetime values are listed in Table 2.
As shown in the Table 2, the luminescence lifetimes of SBA15–
IM+[Eu(TTA)4]− and SBA15–IM+[Eu(BTA)4]− are higher than
the ones for SBA15–IM+[Eu(TAA)4]− and SBA15–IM+[Eu-
(HTA)4]−, which is consistent with the results we concluded
from their emission spectra. In addition, the luminescence life-
time of SBA15–IM+[Tb(HTA)4]− is slightly lower than SBA15–
IM+[Tb(TAA)4]−, which can be also attributed to its low adsorp-
tion in the ultraviolet region.
For the europium based materials, the emission quantum
5
efficiency (η) of the emitting D0 level can be determined on the
basis of the emission spectra together with the lifetimes and can
be calculated using the following equation29 (detailed calculation
process is given in ESI†).
Ar
η ¼
Ar þ Anr
The quantum efficiencies of the europium based materials are
shown in Table 2. It can be clearly seen that the luminescence
quantum efficiencies of SBA15–IM+[Eu(TTA)4]− (55.9%) and
SBA15–IM+[Eu(BTA)4]− (62.3%) are higher than those we pre-
viously reported for europium based mesoporous materials,30
suggesting that this method is a preferable way for constructing
europium based luminescent mesoporous materials. Meanwhile,
the relatively high quantum efficiency of these materials shows
that the SBA15 is an excellent host for the europium complexes.
6 (a) J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508;
(b) A. E. Visser and R. D. Rogers, J. Solid State Chem., 2003, 171, 109;
(c) N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37, 123.
7 (a) B. Mallick, B. Balke, C. Felser and A. V. Mudring, Angew. Chem., Int.
Ed., 2008, 47, 7635; (b) T. Nakashima, Y. Nonoguchi and T. Kawai, Polym.
Adv. Technol., 2008, 19, 1401; (c) M. Li, P. J. Pham, C. U. Pittman and
T. Y. Li, Microporous Mesoporous Mater., 2009, 117, 436.
8 (a) Y. H. Liu, X. Q. Sun, F. Luo and J. Chen, Anal. Chim. Acta, 2007,
604, 107; (b) M. A. Neouze, J. Le Bideau, F. Leroux and A. Vioux,
Chem. Commun., 2005, 1082; (c) M. A. Neouze, J. Le Bideau,
P. Gaveau, S. Bellayer and A. Vioux, Chem. Mater., 2006, 18, 3931;
(d) N. Kimizuka and T. Nakashima, Langmuir, 2001, 17, 6759.
9 (a) K. Lunstroot, K. Driesen, P. Nockemann, C. Gorller-Walrand,
K. Binnemans, S. Bellayer, J. Le Bideau and A. Vioux, Chem. Mater.,
2006, 18, 5711; (b) L. Maggini, H. Traboulsi, K. Yoosaf, J. Mohanraj,
J. Wouters, O. Pietraszkiewicz, M. Pietraszkiewicz, N. Armaroli and
D. Bonifazi, Chem. Commun., 2011, 47, 1625; (c) M. Litschauer,
M. Puchberger, H. Peterlik and M. A. Neouze, J. Mater. Chem., 2010,
20, 1269; (d) M. A. Neouze, J. Mater. Chem., 2010, 20, 9593.
10 (a) K. Binnemans, Chem. Rev., 2005, 105, 4148; (b) S. nz, A. Babai,
K. Binnemans, K. Driesen, R. Giernoth, A. V. Mudring and
P. Nockemann, Chem. Phys. Lett., 2005, 402, 75; (c) H. R. Li,
H. F. Shao, Y. G. Wang, D. S. Qin, B. Y. Liu, W. J. Zhang and W. D. Yan,
Chem. Commun., 2008, 5209; (d) A. Getsis, S. F. Tang and
A. V. Mudring, Eur. J. Inorg. Chem., 2010, 2172.
11 (a) S. F. Tang and A. V. Mudring, Eur. J. Inorg. Chem., 2009, 2769;
(b) K. Lunstroot, K. Driesen, P. Nockemann, L. Viau, P. H. Mutin,
A. Vioux and K. Binnemans, Phys. Chem. Chem. Phys., 2010, 12, 1879;
(c) K. Lunstroot, K. Driesen, P. Nockemann, K. Van Hecke, L. Van Meer-
velt, C. Gorller-Walrand, K. Binnemans, S. Bellayer, L. Viau, J. Le
Bideau and A. Vioux, Dalton Trans., 2009, 298; (d) P. Nockemann,
E. Beurer, K. Driesen, R. Van Deun, K. Van Hecke, L. Van Meervelt and
K. Binnemans, Chem. Commun., 2005, 4354; (e) S. M. Bruno,
R. A. S. Ferreira, F. A. A. Paz, L. D. Carlos, M. Pillinger, P. Ribeiro-
Claro and I. S. Goncalves, Inorg. Chem., 2009, 48, 4882.
Conclusions
In general, we have successfully designed and synthesized a
series of luminescent mesoporous materials by incorporating an
ionic liquid into the SBA15 framework in the synthesis pro-
cedure followed by anion exchange, which provides a novel
method for assembling luminescent materials. All mesoporous
materials are characterized and discussed in detail. The results
demonstrate that all the resulting materials only show a slight
change in their structure and morphology. Further investigation
of the luminescence properties of these materials reveals that the
lanthanide complex ions can be effectively anchored to the
SBA15 framework through an imidazolium molecular bridge,
and preserve their excellent characteristic emission that origi-
nated from the corresponding lanthanide ion. Efforts to research
these kinds of materials modified by ionic liquid are currently
under way in our group.
12 M. S. Tarasenko, N. G. Naumov, A. V. Virovets, D. Yu. Naumov,
N. V. Kuratieva, Yu. V. Mironov, V. N. Ikorskii and V. E. Fedorov,
J. Struct. Chem., 2005, 46, S137.
13 (a) C. P. Mehnert, Chem.–Asian J., 2004, 11, 50; (b) C. M. Zhong,
T. Sasaki, M. Tada and Y. Iisawa, J. Catal., 2006, 242, 357.
14 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky,
J. Am. Chem. Soc., 1998, 120, 6024.
15 L. R. Melby, N. J. Rose, E. Abramson and J. C. Caris, J. Am. Chem.
Soc., 1964, 86, 5117.
Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (20971100, 91122003) and Program for New
Century Excellent Talents in University (NCET-08-0398).
16 T. I. Morrow and E. J. Maginn, J. Phys. Chem. B, 2002, 106, 12807.
17 Y. J. Li, B. Yan and Y. Li, Microporous Mesoporous Mater., 2010, 131,
82.
Notes and references
18 M. V. Landau, S. P. Varkey, M. Herskowitz, O. Regev, S. Pevzner, T. Sen
and Z. Luz, Microporous Mesoporous Mater., 1999, 33, 149.
1 (a) L. N. Sun, H. J. Zhang, Q. G. Meng, F. Y. Liu, L. S. Fu, C. Y. Peng,
J. B. Yu, G. L. Zheng and S. B. Wang, J. Phys. Chem. B, 2005, 109,
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 8567–8574 | 8573