therefore show first order spectra. In a similar manner to the
3
Karplus relationship for JHH coupling constants, the magnitude
Notes and references
{ Crystal data for pseudopeptide 5a: M 5 486.87; orthorhombic, space
group P2(1)2(1)2(1); a 5 4.9826(19), b 5 22.066(10), c 5 24.319(9) s;
3
of the JHF coupling constants have an angular dependence,
V 5 2673.7(18) s3; T 5 173(2) K; Z 5 4; m 5 (Mo-Ka) 1.709 mm21
;
although these values are quite sensitive to the nature of the other
substituents.16 On the other hand the 3JFF coupling constants are
not reliable indicators of vicinal relationships.17
reflections: total 5 35848, unique 4760 (Rint 0.1355); R1 5 0.1260,
wR2 5 0.3296 for 4760 observed data [I . 2s(I)]. CCDC 271257.
Crystal data for pseudopeptide 5b: M 5 448.42; monoclinic, space group
P2(1); a 5 11.121(2), b 5 6.1323(10), c 5 30.671(6) s; b 5 90.179(6)u;
The large 3JHF (y30 Hz) and small 3JHH (1.0–1.5 Hz) coupling
constant values for the threo-a/c isomers can be contrasted with the
smaller 3JHF (y23 Hz) coupling constants for the difluoro-erythro-
V 5 2091.8(7) s3; T 5 93(2) K; Z 5 4; m 5 (Mo-Ka) 0.115 mm21
;
reflections: total 5 13463, unique 6970 (Rint 0.0887); R1 5 0.0825,
wR2 5 0.1525 for 4011 observed data [I . 2s(I)]. CCDC 271258. See http://
dx.doi.org/10.1039/b506010a for crystallographic data in CIF or other
electronic format.
3
b isomers. In the threo-a/c isomers the larger JHF coupling
constants indicate that both C–F bonds have a vicinal C–H bond
anti to each other, as found in the solid state structure of 5a, and
they also conserve a fluorine gauche-relationship (see Newman
projections, Figs 2 and 3). The smaller 3JHF coupling constants of
the erythro-series are consistent with a solution conformation
where the vicinal fluorines are predominantly gauche with respect
to each other. Concurrently, the small 3JHH coupling constants in
each series indicate a vicinal gauche-H–H relationship in each case
(see Newman projections in Figs 2 and 3). Hence it can be
concluded that for each diastereoisomeric series the vicinal
fluorines prefer a gauche-relationship, which influences the relative
orientation of the peripheral amides. We note that the threo-
diastereoisomers (4a and 4c) had very different optical rotation
[a]D values ranging from 258.0u to +19.4u (Fig 1).
1 P. Kirsch, Modern fluoroorganic chemistry; synthesis, reactivity and
application, Wiley-VCH, Weinheim, 2004.
2 D. O’Hagan and H. S. Rzepa, Chem. Commun., 1997, 645–652.
3 R. Pongdee and H.-W. Liu, Bioorganic Chem., 2004, 32, 393–437;
J. T. Welch, Tetrahedron, 1987, 43, 3123–3197.
4 (a) C. R. S. Briggs, M. J. Allen, D. O’Hagan, D. J. Tozer, A. M. Z.
Slawin, A. E. Goeta and J. A. K. Howard, Org. Biomol. Chem., 2004, 2,
5, 732–740; (b) C. R. S. Briggs, D. O’Hagan, H. S. Rzepa and
A. M. Z. Slawin, J. Fluorine Chem., 2004, 125, 19–25; (c) C. R. S. Briggs,
D. O’Hagan, J. A. K. Howard and D. S. Yufit, J. Fluorine Chem., 2003,
119, 9–13.
5 M. Nicoletti, D. O’Hagan and A. M. Z. Slawin, J. Am. Chem. Soc.,
2005, 127, 482–483.
6 (a) J. W. Banks, A. S. Batsanov, J. A. K. Howard, D. O’Hagan,
H. S. Rzepa and S. Martin-Santamaria, J. Chem. Soc., Perkin Trans. 2,
1999, 2409–2411; (b) C. F. Tormena, N. S. Amadeu, R. Rittner and
R. J. Abraham, J. Chem. Soc., Perkin Trans. 2, 2002, 773–778.
7 (a) R. I. Mathad, F. Gessier, D. Seebach and B. Jaun, Helv. Chim. Acta,
2005, 88, 266–280; (b) D. Seebach, A. K. Beck and D. J. Bierbaum,
Chem. Biodiversity, 2004, 1, 1111–1239; (c) F. Gessier, C. Noti,
M. Rueping and D. Seebach, Helv. Chim. Acta, 2003, 86, 1862–1870.
8 N. C. Craig, A. Chen, K. H. Suh, S. Klee, G. C. Mellau, B. P.
Winnewisser and M. Winnewisser, J. Am. Chem. Soc., 1997, 119, 4789.
9 G. Angelini, E. Gavuzzo, A. L. Segre and M. Speranz, J. Phys. Chem.,
1990, 94, 8762.
10 M. Tavasli, D. O’Hagan, C. Pearson and M. C. Petty, Chem. Commun.,
2002, 11, 1226–1227.
11 G. A. Olah, M. Nojima and I. Keres, Synthesis,, 1973, 780–783; G. Olah,
J. Org. Chem, 1979, 44, 3872–3881.
12 D. H. R. Barton, R. H. Hesse, G. P. Jackman, L. Ogunkoy and
M. M. Pechet, J. Chem. Soc., Perkin Trans. 1, 1974, 739–742;
D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press,
New York, 1965.
A series of amino acids, including (S)-alanine, (S)-valine
and (S)-leucine, were then coupled as their methyl esters to
erythro/meso-difluorosuccinic acid 3a, prepared from the purified
meso-difluorodiphenylethane 2a by means of ozonolysis. This
generated the erythro-stereoisomers 6, 7 and 8 respectively, in
enantiomerically pure form. The NMR coupling constants of all
these compounds resemble closely those values for the erythro-
compounds 4b and 5b, and thus similar solution state conforma-
tions of the difluorosuccinamide moiety can be assumed.
In summary, the bis((S)amino acid ester) amides of 2,3-
difluorosuccinic acid, 4a–c, have been prepared in diastereomeri-
cally pure form. The solid state conformations of the hydrolysed
bis(acids) 5a and 5b suggest that the a-fluoro amides adopt an
approximately anti-planar arrangement and solution state NMR
data of 4 and 5 indicate that the vicinal fluorines adopt a gauche-
conformation within the difluorosuccinamide moiety, and that the
amide groups are orientated differently for the two diastereoiso-
meric series. Such behaviour of the C–F bond should be useful in
the design of peptide mimetics and in influencing the conformation
of bioactive molecules.
13 M. Nakajima, K. Tomioka and K. Koga, Tetrahedron, 1993, 49,
9735–9750; L. Long, Jr., Chem. Rev., 1940, 27, 437–493; P. S. Bailey,
Chem. Rev., 1958, 58, 925–1010.
14 A. I. Burmakov, L. A. Motnyak, B. V. Kunshenko, L. A. Alexeeva and
L. M. Yagupolskii, J. Fluorine Chem., 1981, 19, 151–161.
15 M. Hudlicky, J. Fluorine Chem., 1979, 14, 189–199.
16 C. Thibaudeau, J. Plavec and J. Chattopadhyaya, J. Org. Chem., 1998,
63, 4967–4984; J. San Fabian, J. Guilleme and E. Diez, J. Magn. Reson.,
1998, 113, 255–265; A. M. Ihrig and S. L. Smith, J. Am. Chem. Soc.,
1970, 52, 759–763.
17 R. J. Abrahams and E. Bretschneider, in Internal Rotations in Molecules,
ed. W. J. Orville-Thomas, John Wiley & Sons, London, 1974;
A. M. Ihrig and S. L. Smith, J. Am. Chem. Soc., 1970, 52, 4, 759–763.
4326 | Chem. Commun., 2005, 4324–4326
This journal is ß The Royal Society of Chemistry 2005