Communication
ChemComm
6
H. G. Mautner, S.-H. Chu and W. H. H. G u¨ nther, J. Am. Chem. Soc.,
1
963, 85, 3458.
7
8
A. P. Kozikowski and A. Ames, J. Am. Chem. Soc., 1980, 102, 860.
D. S. Rampon, F. S. Rodembusch, J. M. F. M. Schneider, I. H. Bechtold,
P. F. B. Gonçalves, A. A. Merlo and P. H. Schneider, J. Mater. Chem., 2010,
2
0, 715.
9
J. Wang, M. S ´a nchez-Rosell o´ , J. L. Ace n˜ a, C. del Pozo, A. E. Sorochinsky,
S. Fustero, V. A. Soloshonok and H. Liu, Chem. Rev., 2014, 114, 2432.
0 J. A. Erickson and J. I. McLoughlin, J. Org. Chem., 1995, 60, 1626.
1 (a) D. E. Yerien, S. Barata-Vallejo and A. Postigo, Chem. – Eur. J.,
Fig. 2 Plausible mechanism.
1
1
2
017, 23, 14676; (b) B. Manteau, S. Pazenok, J.-P. Vors and
obtained, and the relative research studies are ongoing and further
detailed mechanism investigations are underway.
In summary, difluoromethylselenoester compounds, another
novel and promising class of selenoester compounds, are reported
for the first time. They can be efficiently synthesized from
F. R. Leroux, J. Fluorine Chem., 2010, 131, 140.
12 (a) K. L. Kirk, Org. Process Res. Dev., 2008, 12, 305; (b) N. A. Meanwell,
J. Med. Chem., 2011, 54, 2529.
3 For selected examples, see: (a) P. S. Fier and J. F. Hartwig, Angew.
Chem., Int. Ed., 2013, 52, 2092; (b) L. Li, F. Wang, C. Ni and J. Hu,
Angew. Chem., Int. Ed., 2013, 52, 12390; (c) J. Yang, M. Jiang, Y. Jin,
H. Yang and H. Fu, Org. Lett., 2017, 19, 2758; (d) J. W. Lee, W. Zheng,
C. A. Morales-Rivera, P. Liu and M.-Y. Ngai, Chem. Sci., 2019,
1
2
aldehydes with simple BnSeCF H. This approach features mild
reaction conditions, broad substrate scope, good tolerance of
1
0, 3217.
functional groups, and importantly, no metal is involved in the 14 For selected examples, see: (a) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez,
R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond and
P. S. Baran, J. Am. Chem. Soc., 2012, 134, 1494; (b) B. Bayarmagnai,
C. Matheis, K. Jouvin and L. J. Goossen, Angew. Chem., Int. Ed., 2015,
54, 5753; (c) D. Zhu, Y. Gu, L. Lu and Q. Shen, J. Am. Chem. Soc., 2015,
reaction. The difluoromethylselenolations of several aldehyde-
containing bioactive derivatives have been realized; thus, this
approach has the potential to be an important tool for the late-
stage modification of aldehyde-containing drug molecules and
advanced synthetic intermediates.
We are grateful for financial support from National Natural
Science Foundation of China (No. NSFC-21572178, NSFC-
137, 10547; (d) Z. Huang, O. Matsubara, S. Jia, E. Tokunaga and
N. Shibata, Org. Lett., 2017, 19, 934.
1
5 Examples for the difluoromethylation of selenides: (a) Y.-M. Lin,
W.-B. Yi, W.-Z. Shen and G.-P. Lu, Org. Lett., 2016, 18, 592; (b) N. B. Heine
and A. Studer, Org. Lett., 2017, 19, 4150; (c) T. Dong, J. Nie and
C.-P. Zhang, Tetrahedron, 2018, 74, 5642; examples for the direct
difluoromethylselenolation: (d) Q. Glenadel, E. Ismalaj and T. Billard,
J. Org. Chem., 2016, 81, 8268; (e) C. Ghiazza, T. Billard and A. Tlili,
Chem. – Eur. J., 2017, 23, 10013; ( f ) C. Ghiazza, Q. Glenadel, A. Tlili and
T. Billard, Eur. J. Org. Chem., 2017, 3812; (g) Q. Glenadel, E. Ismalaj and
T. Billard, Org. Lett., 2018, 20, 56; (h) K. Lu, Q. Li, X. Xi, T. Zhou and
X. Zhao, J. Org. Chem., 2020, 85, 1224; (i) S. Jin, Z. Kuang and Q. Song,
Org. Lett., 2020, 22, 615.
21702162 and NSFC-21971206).
Conflicts of interest
There are no conflicts to declare.
1
6 (a) C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani and E. J. Lien,
J. Med. Chem., 1973, 16, 1207; (b) I. Rico and C. Wakselhan, Tetrahedron
Lett., 1981, 22, 323.
Notes and references
1
(a) M. P. Rayman, Lancet, 2000, 356, 233; (b) C. M. Weekley and 17 (a) C. Chatgilialoglu, D. Crich, M. Komatsu and I. Ryu, Chem. Rev.,
H. H. Harris, Chem. Soc. Rev., 2013, 42, 8870.
1999, 99, 1991; (b) E. Godineau and Y. Landais, Chem. – Eur. J., 2009,
15, 3044; (c) J. Wang, C. Liu, J. Yuan and A. Lei, Angew. Chem., Int.
Ed., 2013, 52, 2256.
2
(a) P. Arsenyan, E. Paegle, S. Belyakov, I. Shestakova, E. Jaschenko,
I. Domracheva and J. Popelis, Eur. J. Med. Chem., 2011, 46, 3434;
(
b) J. Y. Kang, L. J. Costyn, T. Nagy, E. A. Cowan, C. D. Oldham, 18 R. D. Taylor, M. MacCoss and A. D. G. Lawson, J. Med. Chem., 2014,
S. W. May and R. D. Arnold, Arch. Biochem. Biophys., 2011, 515, 112;
57, 5845.
(
c) M. P. Rayman, Lancet, 2012, 379, 1256.
19 (a) H. Matsubara, I. Ryu and C. H. Schiesser, J. Org. Chem., 2005,
70, 3610; (b) I. Ryu, Y. Uenoyama and H. Matsubara, Bull. Chem. Soc.
Jpn., 2006, 79, 1476.
3
4
L. A. Bullock, J. Parnell, M. Perez and J. G. T. Armstrong, Geology
Today, 2019, 35, 140.
(a) N. D ´ı az-Argelich, I. Enc ´ı o, D. Plano, A. P. Fernandes, J. A. Palop and 20 (a) E. G. Janzen, P. H. Krygsman, D. A. Lindsay and D. L. Haire,
C. Sanmart ´ı n, Molecules, 2017, 22, 1288; (b) M. L. D. la Cruz-Claure,
J. Am. Chem. Soc., 1990, 112, 8279; (b) R. Vanjari, T. Guntreddi and
K. N. Singh, Green Chem., 2014, 16, 351; (c) Y.-L. Deng, S. Tang,
G.-L. Ding, M.-W. Wang, J. Li, Z.-Z. Li, L. Yuan and R.-L. Sheng, Org.
Biomol. Chem., 2016, 14, 9348; (d) B. Liu, C.-Y. Wang, M. Hu,
R.-J. Song, F. Chen and J.-H. Li, Chem. Commun., 2017, 53, 1265;
(e) L. Thevenin, C. Fliedel, M. Fantin, T. G. Ribelli, K. Matyjaszewski
and R. Poli, Inorg. Chem., 2019, 58, 6445.
A. A. C `e spedes-Llave, M. T. Ulloa, M. Benito-Lama, E. Dom ´ı nguez- A´ lvarez
and A. Bastida, Microorganisms, 2019, 7, 664.
(a) D. L. Boger and R. J. Mathvink, J. Am. Chem. Soc., 1990, 112, 4003;
5
(
b) S. Gr ´e laud, V. Desvergnes and Y. Landais, Org. Lett., 2016, 18, 1542;
c) G. Pandey, S. K. Tiwari, B. Singh, K. Vanka and S. Jain, Chem.
Commun., 2017, 53, 12337.
(
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020