D. Jeremic, Q. Wang, R. Quyoum and M. C. Baird, J. Organomet.
anol (100 cm3) containing 5% HCl solution. The polyethylene
was filtered off, broken into small pieces, washed extensively
with methanol to remove impurities and dried under vacuum to
constant weight.
Chem., 1995, 497, 143; S. W. Ewart, M. J. Sarsfield, D. Jeremic,
T. L. Tremblay and M. C. Baird, Organometallics, 1998, 17, 1502.
4 G. Ricci and L. Porri, Macromolecules, 1994, 27, 868.
5 N. Ishichara, T. Seimiya, M. Kuramoto and M. Uoi,
Macromolecules, 1986, 19, 2464; N. Ishihara, M. Kuramoto and
M. Uoi, Macromolecules, 1988, 21, 3356; A. Zambelli, L. Oliva and
C. Pellecchia, Macromolecules, 1989, 22, 2129; J. C. W. Chien,
Z. Salajka and S. Dong, Macromolecules, 1992, 25, 3199; T. E.
Ready, R. O. Day, J. C. W. Chien and M. D. Rausch,
Macromolecules, 1993, 26, 5822; D. J. Duncalf, H. J. Wade,
C. Waterson, P. J. Derrick, D. M. Haddleton and A. McCamley,
Macromolecules, 1996, 29, 6399; W. Kaminsky, S. Lenk, V. Scholz,
H. W. Roesky and A. Herzog, Macromolecules, 1997, 30, 7647.
6 D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Alkoxides,
Academic Press, New York, 1978; K. C. Malhotra and R. L. Martin,
J. Organomet. Chem., 1982, 239, 159.
7 M. H. Chisholm, Chemtracts, 1992, 4, 273.
8 G. P. Lutschinsky and E. S. Al’tman, Z. Anorg. Allg. Chem., 1935,
225, 321.
9 R. W. Crowe and A. N. Caughlan, J. Am. Chem. Soc., 1950, 72,
1694.
10 S. Shah, A. Singh and R. C. Mehrotra, Polyhedron, 1986, 3, 1285.
11 G. Sartori, G. Casnati, F. Bigi and G. Predieri, J. Org. Chem, 1990,
55, 4371.
X-Ray crystallography
Crystals of complex 7 were grown from a light petroleum solu-
tion. Data were collected on a Siemens SMART diffractometer.
The collection covered a nominal sphere of reciprocal space, by
a combination of four sets of exposures. Each set had a differ-
ent φ angle for the crystal and each exposure covered 0.3Њ in α.
Coverage of the unique data set is at least 98% complete to 56Њ
in 2θ. Crystal decay was monitored by repeating the initial
frames at the end of data collection and analysing the duplicate
reflections. Unit cell parameters were obtained by a least
squares fit of all data with I > 10σ(I). Data were corrected for
Lorentz-polarisation and absorption effects. The structure was
solved by direct methods and refined by the full-matrix least-
squares technique. All non-hydrogen atoms were allowed to
assume anisotropic thermal motion. Hydrogen atoms were in
calculated positions (C–H, 0.96 Å) and refined with a riding
model with Uiso = 0.05. Programs used were SHELXS26 for
structure solution and SHELXL27 for refinement. Diagrams
were prepared with ORTEP 3.28
12 D. L. Barnes, N. W. Eilerts and J. A. Heppert, Polyhedron, 1994, 13,
743.
13 P. Aaltonen, J. Seppala, L. Matilainen and M. Leskela, Macro-
molecules, 1994, 27, 3136.
14 L. Matilainen, M. Klinga and M. Leskela, Polyhedron, 1996, 15,
153.
15 M. W. Glenny, A. J. Nielson and C. E. F. Richard, Polyhedron, 1998,
17, 851.
16 P. Sobota and S. Szafert, Inorg. Chem., 1996, 35, 1778; G. Morini,
E. Albizzati, G. Balbontin, I. Mingozzi, M. C. Sacchi, F. Forlini and
I. Tritto, Macromolecules, 1996, 29, 5770; P. Sobota and S. Szafert,
Inorg. Chem., 1996, 35, 1778; J. Xu, L. Feng, S. Yang, Y. Yang and
X. Kong, Macromolecules, 1997, 30, 7655.
17 J. R. Dilworth, J. Hanich and M. Krestel, J. Organomet. Chem., 1986,
315, C9.
Crystal data. C15H23Cl3OTi, M = 373.58, monoclinic, space
group P21/c, a = 17.294(3), b = 6.1220(10), c = 17.833(4) Å, β =
108.36(3)Њ, U = 1791.9(6) Å3, T = 203 K, Z = 4, µ(Mo-Kα) =
0.918 mmϪ1, 3416 observed reflections, final wR(F 2) for all
4032 data 0.1024, R1 = 0.0466.
CCDC reference number 186/1795.
lographic files in .cif format.
18 Y. Morino and H. Uehara, J. Chem. Phys., 1966, 45, 4543.
19 L. M. Engelhardt, R. I. Papasergio, C. L. Raston and A. H. White,
Organometallics, 1984, 3, 18.
20 C. H. Winter, X.-X. Zhou, D. A. Dobbs and J. Heeg, Organo-
metallics, 1991, 10, 210.
21 I. Jibril, S. Abu-Orabi, S. A. Klaib, W. Imhof and G. Huttner,
J. Organomet. Chem., 1992, 433, 253.
22 H.-M. Gau, C.-S. Lee, C.-C. Lin, M.-K. Jiang, Y.-C. Ho
and C.-N. Kuo, J. Am. Chem. Soc., 1996, 118, 2936.
23 S. L. Latesky, J. Keddington, A. K. McMullen, I. P. Rothwell and
J. C. Huffman, Inorg. Chem., 1985, 24, 995.
Theoretical
Density functional calculations29 were carried out on the com-
plexes [TiCl3(OC6H2Me3-2,4,6)] 4, [TiCl3(OMe)] and TiCl3Me.
The hybrid Becke-3 parameter functional (B3)30 together with
the Lee–Yang–Parr correlation functional (LYP)31 has been
used in all calculations. Owing to the large size of molecule 4
the basis set was restricted to a Dunning/Huzinaga valence
double-zeta set for H, C and O32 using Hay–Wadt pseudo-
potentials with valence double-zeta basis sets for Cl and Ti.33
This resulted in 378 basis functions contracted to 158 and the
geometry optimisation required several days on a 16-processor
R10000 SGI supercomputer. At the optimised geometry a
subsequent natural bond orbital analysis was carried out.
24 R. L. Martin and G. Winter, J. Chem. Soc., 1961, 2947.
25 C. N. Field, J. C. Green, N. Kaltsoyannis, G. S. McGrady,
A. N. Moody, M. Siggel and M. De Simone, J. Chem. Soc., Dalton
Trans., 1997, 213.
26 G. M. Sheldrick, SHELXS 86, Acta Crystallogr., Sect. A, 1990, 46,
467.
27 G. M. Sheldrick, SHELXL 93, Program for the refinement of crystal
structures, University of Göttingen, 1993.
28 ORTEP 3 for WINDOWS, Based on ORTEP III, C. K. Johnson and
M. N. Burnette, Report ORNL-6895, modified by L. J. Farrugia,
University of Glasgow, 1996.
29 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson,
J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G.
Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B.
Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y.
Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle,
R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees,
J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and
J. A. Pople, GAUSSIAN 94, Revision D.1, Gaussian, Inc.,
Pittsburgh, PA, 1996.
Acknowledgements
P. S. thanks the High Performance Computer Committee
(HPCC), the Auckland University Research Committee
(AURC) and the Marsden Fund Wellington (contact number
96-UOA-PSE-0081) for financial support.
References
1 H. H. Brintzinger, D. Fischer, R. Mulhaupt, B. Rieger and
R. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 34, 1143;
M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255; W.
Kaminsky, J. Chem. Soc., Dalton Trans., 1998, 1413; G. J. P.
Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int. Ed.,
1999, 38, 429.
2 T. V. Lubben, P. T. Wolczanski and G. D. Van Duyne,
Organometallics, 1984, 3, 977.
3 K. Soga, J. R. Park and Y. Shiono, Polym. Commun., 1989, 22, 2126;
J. R. Park, T. Shiono and K. Soga, Macromolecules, 1992, 25, 521;
C. Pellecchia, A. Immirzi, A. Grassi and A. Zambelli, Organo-
metallics, 1993, 12, 4473; R. Quyoum, Q. Wang, M. J. Tudoret,
M. C. Baird and D. J. Gillis, J. Am. Chem. Soc., 1994, 116, 6435;
30 A. D. Becke, Phys. Rev. A, 1988, 38, 3098.
31 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
32 T. H. Dunning and P. J. Hay, in Modern Theoretical Chemistry,
ed. H. F. Schaefer III, Plenum, New York, 1976, pp. 1–28.
33 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.
Paper a908435e
J. Chem. Soc., Dalton Trans., 2000, 529–537
537