Article
Macromolecules, Vol. 43, No. 2, 2010 913
radical with a naphthalene moiety. A direct evidence for the
formation of indenyl intermediate, however, is difficult to
find out in this system due to the insolubility of the “poly-
naphthalene”. Thanks to the flexibility of PCL side chain, a
solution NMR spectrum can be obtained for brushed “poly-
naphthalene”. After Bergman cyclization, two new set of peaks
appeared around 8.1 and 6.6 ppm (Figure 6), which were
assigned to naphthalene subunits and indene subunits,48,49
respectively. The main chain of these brush polymers can
thus be rationalized as random conjugated copolymers of
naphthalene and indenylenemethylene.
(14) Hargadon, M. T.; Davey, E. A.; McIntyre, T. B.; Gnanamgari, D.;
Wynne, C. M.; Swift, R. C.; Zimbalist, J. R.; Fredericks, B. L.;
Nicastro, A. J.; Goodson, F. E. Macromolecules 2008, 41, 741–750.
(15) Cheuk, K. K. L.; Li, B. S.; Lam, J. W. Y.; Xie, Y.; Tang, B. Z.
Macromolecules 2008, 41, 5997–6005.
(16) Zhang, W.; Shiotsuki, M.; Masuda, T. Polymer 2007, 48, 2548–
2553.
(17) Wang, H. B.; Jost, R.; Wudl, F. J. Polym. Sci., Part A: Polym.
Chem. 2007, 45, 800–808.
(18) Amrutha, S. R.; Jayakannan, M. Macromolecules 2007, 40, 2380–
2391.
(19) Yurteri, S.; Cianga, A.; Demirel, A. L.; Yagci, Y. J. Polym. Sci.,
Part A: Polym. Chem. 2005, 43, 879–896.
(20) Yurteri, S.; Cianga, I.; Degirmenci, M.; Yagci, Y. Polym. Int. 2004,
53, 1219–1225.
Conclusion
(21) John, J. A.; Tour, J. M. J. Am. Chem. Soc. 1994, 116, 5011–5012.
(22) John, J. A.; Tour, J. M. Tetrahedron 1997, 53, 15515–15534.
(23) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25–31.
(24) Basak, A.; Mandal, S.; Bag, S. S. Chem. Rev. 2003, 103, 4077–4094.
(25) Biggins, J. B.; Onwueme, K. C.; Thorson, J. S. Science 2003, 301,
1537–1541.
(26) Sud, D.; Wigglesworth, T. J.; Branda, N. R. Angew. Chem., Int. Ed.
2007, 46, 8017–8019.
(27) Nicolaou, K. C.; Chen, J. S.; Zhang, H. J.; Montero, A. Angew.
Chem., Int. Ed. 2008, 47, 185–189.
(28) Ogawa, K.; Koyama, Y.; Ohashi, I.; Sato, I.; Hirama, M. Angew.
Chem., Int. Ed. 2009, 48, 1110–1113.
(29) Pitsch, W.; Klein, M.; Zabel, M.; Konig, B. J. Org. Chem. 2002, 67,
6805–6807.
(30) Poloukhtine, A.; Popik, V. V. J. Org. Chem. 2006, 71, 7417–7421.
(31) Zeidan, T. A.; Kovalenko, S. V.; Manoharan, M.; Alabugin, I. V.
J. Org. Chem. 2006, 71, 962–975.
(32) Basak, A.; Bag, S. S.; Basak, A. Bioorg. Med. Chem. 2005, 13, 4096–
4102.
We have successfully synthesized brush polymers with con-
jugated backbone via a catalyst-free Bergman cyclization of
enediyne-containing macromonomers. The size distributions of
brush polymers were wide in all cases; higher molecular weight
fractions could be obtained through repeat centrifugation or
dialysis. IR and NMR spectra showed disappearance of acetylene
units after Bergman cyclization; the formation of long conjugated
backbones was further confirmed with UV-vis spectroscopy.
The structure of backbone of brush polymers were rationalized as
a copolymer of naphthalene and indenylenemethylene. All the
brush polymers obtained are readily soluble in common organic
solvents. By utilizing thermal Bergman cyclization, conjugated
polymers could be obtained in metal-free manner. Further
exploration of thermal and optoelectronic properties of these
polymers are underway in our lab.
(33) Rule, J. D.; Wilson, S. R.; Moore, J. S. J. Am. Chem. Soc. 2003, 125,
12992–12993.
Acknowledgment. We thank National Natural Science
Foundation of China (No. 20874026; No. 20704013), Shanghai
Pujiang Program (07PJ14024), Shuguang Project (07SG33), New
Century Excellent Talents in University, and Shanghai Leading
Academic Discipline Project (B502) for financial support.
(34) Rule, J. D.; Moore, J. S. Macromolecules 2005, 38, 7266–7273.
(35) Smith, D. W.; Babb, D. A.; Snelgrove, R. V.; Townsend, P. H.;
Martin, S. J. J. Am. Chem. Soc. 1998, 120, 9078–9079.
(36) Rettenbacher, A. S.; Perpall, M. W.; Echegoyen, L.; Hudson, J.;
Smith, D. W. Chem. Mater. 2007, 19, 1411–1417.
(37) Smith, D. W.; Shah, H. V.; Perera, K. P. U.; Perpall, M. W.; Babb,
D. A.; Martin, S. J. Adv. Funct. Mater. 2007, 17, 1237–1246.
(38) Chen, X. H.; Tolbert, L. M.; Hess, D. W.; Henderson, C. Macro-
molecules 2001, 34, 4104–4108.
(39) Storey, R. F.; Sherman, J. W. Macromolecules 2002, 35, 1504–1512.
(40) Zhu, H.; Deng, G.; Chen, Y. Polymer 2008, 49, 405–411.
(41) Dai, W.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2005, 70, 6647–
6652.
References and Notes
(1) Xie, M. R.; Dang, J. Y.; Han, H. J.; Wang, W. Z.; Liu, J. W.; He,
X. H.; Zhang, Y. Q. Macromolecules 2008, 41, 9004–9010.
(2) Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Prog. Polym. Sci.
2008, 33, 759–785.
(3) Lee, H.-i.; Matyjaszewski, K.; Yu-Su, S.; Sheiko, S. S. Macromo-
lecules 2008, 41, 6073–6080.
(4) Yuan, W.; Yuan, J.; Zhang, F.; Xie, X.; Pan, C. Macromolecules
2007, 40, 9094–9102.
(5) Zhang, M. F.; Muller, A. H. E. J. Polym. Sci., Part A: Polym.
(42) Odedra, A.; Wu, C. J.; Pratap, T. B.; Huang, C. W.; Ran, Y. F.;
Liu, R. S. J. Am. Chem. Soc. 2005, 127, 3406–3412.
(43) Grissom, J. W.; Klingberg, D.; Meyenburg, S.; Stallman, B. L.
J. Org. Chem. 1994, 59, 7876–7888.
Chem. 2005, 43, 3461–3481.
(6) Liu, M. J.; Vladimirov, N.; Frechet, J. M. J. Macromolecules 1999,
32, 6881–6884.
(7) Brittain, W. J.; Minko, S. J. Polym. Sci., Part A: Polym. Chem.
(44) Manabe, T.; Yanagi, S.-i.; Ohe, K.; Uemura, S. Organometallics
1998, 17, 2942–2944.
(45) Sugiura, H.; Nigorikawa, Y.; Saiki, Y.; Nakamura, K.; Yamaguchi,
M. J. Am. Chem. Soc. 2004, 126, 14858–14864.
2007, 45, 3505–3512.
(8) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
(9) Seo, M.; Beck, B. J.; Paulusse, J. M. J.; Hawker, C. J.; Kim, S. Y.
Macromolecules 2008, 41, 6413–6418.
(10) Foster, E. J.; Berda, E. B.; Meijer, E. W. J. Am. Chem. Soc. 2009,
131, 6964–6966.
(11) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200–1205.
(12) Lo, P. K.; Sleiman, H. F. Macromolecules 2008, 41, 5590–5603.
(13) Qin, Z. Y.; Chen, Y. W.; Zhou, W. H.; He, X. H.; Bai, F. L.; Wan,
M. X. Eur. Polym. J. 2008, 44, 3732–3740.
(46) Model compounds were used for IR analysis under identical
Bergman cyclization conditions as the change of triple-bond
stretching peaks of 4 and 5 were barely seen due to the fraction
of enediyne moiety in macromonomers were too low.
(47) Johnson, J. P.; Bringley, D. A.; Wilson, E. E.; Lewis, K. D.; Beck,
L. W.; Matzger, A. J. J. Am. Chem. Soc. 2003, 125, 14708–14709.
(48) Felts, A. S.; Siegel, B. S.; Young, S. M.; Moth, C. W.; Lybrand, T.
P.; Dannenberg, A. J.; Marnett, L. J.; Subbaramaiah, K. J. Med.
Chem. 2008, 51, 4911–4919.
(49) Shibata, T.; Ueno, Y.; Kanda, K. Synlett 2006, 411–414.