Thimerosal (Merthiolate)
shift anisotropy,21 a mechanism that not only applies to
199Hg,22 but other nuclei such as 31P,23 77Se,23b,24 57Fe,25
103Rh,26 195Pt,27 207Pb,28 and 205Tl.29,30 Specifically, for
situations in which the condition ω0τc , 1 is satisfied, the
relaxation component due to chemical shift anisotropy is
21
2
directly proportional to B0 . Thus, as the strength of the
magnetic field increases, w1/2 of the satellites increases such
3
that it is not possible to resolve the JH-H coupling.
Since relaxation via chemical shift anisotropy is influenced
by the rotational correlation time (τc), the line width of the
satellites is a function of the viscosity of the solvent.
Specifically, for ω0τc , 1, relaxation due to chemical shift
anisotropy is proportional to the rotational correlation time
(τc) which is dependent on the viscosity.21 For this reason,
the multiplet structure of the mercury satellites of the ethyl
group of thimerosal are much better resolved in methanol
(Figure 8) and acetone that have a lower viscosity than that
of water.31
Figure 4. Calculated powder pattern for thimerosal on the basis of the
experimental unit cell data (Cu radiation).
Structural Characterization of PhSHgMe and
PhSHgEt. Interestingly, while arylthiolate mercury com-
plexes of the type ArSHgR are known,19,32 structurally
characterized examples listed in the Cambridge Structural
Database33 are restricted to methyl and phenyl derivatives.
As such, we considered it worthwhile to determine the
(21) (a) Farrar, T. C.; Becker, E. D. Pulse and FT NMR; Academic Press:
New York, 1971. (b) Farrar, T. C. Introduction to Pulse NMR
Spectroscopy; The Farragut Press: Chicago, Madison, 1989. (c)
Thouvenot, R. L’Actualite Chimique 1996, 7, 102–111. (d) Kow-
alewski, J.; Ma¨ler, L. Nuclear Spin Relaxation in Liquids: Theory,
Experiments, and Applications; Taylor and Francis: New York, 2006.
(22) (a) Benn, R.; Gu¨nther, H.; Maercker, A.; Menger, V.; Schmitt, P.
Angew. Chem., Int. Ed. Engl. 1982, 21, 295–296. (b) Gillies, D. G.;
Blaauw, L. P.; Hays, G. R.; Huis, R.; Clague, A. D. H. J. Magn. Reson.
1981, 42, 420–428. (c) Cecconi, F.; Ghilardi, C. A.; Innocenti, P.;
Midollini, S.; Orlandini, A.; Ienco, A.; Vacca, A. J. Chem. Soc., Dalton
Trans. 1996, 2821–2826.
Figure 5. 199Hg NMR spectrum (53.75 MHz) of thimerosal in D2O.
1JHg-C (1316 Hz) is considerably larger than 2JHg-C (74 Hz),
2JHg-H (176 Hz) is significantly smaller than 3JHg-H (250 Hz).
(23) (a) Randall, L. H.; Carty, A. J. Inorg. Chem. 1989, 28, 1194–1196.
(b) Penner, G. H. Can. J. Chem. 1991, 69, 1054–1056.
2
3
A similar trend in JHg-H and JHg-H coupling constants is
(24) Wong, T. C.; Ang, T. T.; Guziec, F. S., Jr.; Moustakis, C. A. J. Magn.
Reson. 1984, 57, 463–470.
also observed for other EtHgX derivatives.20
Other interesting aspects of the H NMR spectrum of
(25) Baltzer, L.; Becker, E. D.; Averill, B. A.; Hutchinson, J. M.; Gansow,
O. A. J. Am. Chem. Soc. 1984, 106, 2444–2446.
1
thimerosal pertain to the chemical shifts of the CH2 and CH3
groups and the nature of the 199Hg satellites. With respect to
the chemical shifts, it is noteworthy that the 1H NMR
chemical shift of the CH2 group is downfield of the CH3
group (Figure 7), an order that is opposite to that for other
EtHgX derivatives (X ) CN, Br, Cl, NO3, I, ClO4), with
the exception of Et2Hg.20
(26) (a) Socol, S. M.; Meek, D. W. Inorg. Chim. Acta 1985, 101, L45-L46.
(b) Cocivera, M.; Ferguson, G.; Lenkinski, R. E.; Szczecinski, P.;
Lalor, F. J.; O’Sullivan, D. J. J. Magn. Reson. 1982, 46, 168–171.
(27) (a) Lallemand, J.-Y.; Soulie´, J.; Chottard, J.-C. J. Chem. Soc., Chem.
Commun. 1980, 436–438. (b) Anklin, C. G.; Pregosin, P. S. Magn.
Reson. Chem. 1985, 23, 671–675. (c) Benn, R.; Bu¨ch, H. M.;
Reinhardt, R.-D. Magn. Reson. Chem. 1985, 23, 559–564. (d) Dechter,
J. J.; Kowaleski, J. J. Magn. Reson. 1984, 59, 146–149. (e) Pregosin,
P. S. Coord. Chem. ReV. 1982, 44, 247–291. (f) Ismail, I. M.; Kerrison,
S. J. S.; Sadler, P. J. Polyhedron 1982, 1, 57–59. (g) Skvortsov, A. N.
Russ. J. Gen. Chem. 2000, 70, 1023–1027. (h) Hughes, R. P.; Sweetser,
J. T.; Tawa, M. D.; Williamson, A.; Incarvito, C. D.; Rhatigan, B.;
Rheingold, A. L.; Rossi, G. Organometallics 2001, 20, 3800–3810.
(i) Reinartz, S.; Baik, M.-H.; White, P. S.; Brookhart, M.; Templeton,
J. L. Inorg. Chem. 2001, 40, 4726–4732. (j) Reinartz, S.; White, P. S.;
Brookhart, M.; Templeton, J. L. Organometallics 2000, 19, 3854–
3866.
The feature of interest pertaining to the 199Hg satellites of
1
the H NMR spectrum is concerned with the fact that,
whereas the main signals associated with the ethyl group
consist of a well defined triplet and quartet, the satellites
are broad such that 3JH-H is not well resolved. Furthermore,
the appearance of the 199Hg satellites are dependent on the
magnetic field, with the ability to resolve 3JH-H coupling in
the satellites decreasing with increasing magnetic field
strength (Figure 7). The origin of the magnetic field
dependence of the satellites is due to relaxation by chemical
(28) (a) Hawk, R. M.; Sharp, P. R. J. Chem. Phys. 1974, 60, 1522–1527.
(b) Hays, G. R.; Gillies, D. G.; Blaauw, L. P.; Clague, A. D. H. J.
Magn. Reson. 1981, 45, 102–107.
(29) (a) Brady, F.; Matthews, R. W.; Forster, M. J.; Gillies, D. G. Inorg.
Nucl. Chem. Lett. 1981, 17, 155–159. (b) Hinton, J. F.; Ladner, K. H.
J. Magn. Reson. 1978, 32, 303–306. (c) Brady, F.; Matthews, R. W.;
Forster, M. J.; Gillies, D. G. J. Chem. Soc., Chem. Commun. 1981,
911–912. (d) Ghosh, P.; Desrosiers, P. J.; Parkin, G. J. Am. Chem.
Soc. 1998, 120, 10416–10422.
(20) Petrosya, V. S.; Reutov, O. A. J. Organomet. Chem. 1974, 76, 123–
(30) Benn, R.; Rufinska, A. Angew. Chem., Int. Ed. Engl. 1986, 25, 861–
881.
169.
Inorganic Chemistry, Vol. 47, No. 14, 2008 6423