10.1002/chem.202001502
Chemistry - A European Journal
COMMUNICATION
G. B. Hammond, B. Xu, Angew. Chem. Int. Ed. 2010, 49, 7247-7252;
Angew. Chem. 2010, 122, 7405-7410; e) M. D. Levin, F. D. Toste, Angew.
Chem. Int. Ed. 2014, 53, 6211-6215; Angew. Chem. 2014, 126, 6325-6329.
a) A. S. K. Hashmi, C. Lothschütz, R. Döpp, M. Rudolph, T. D. Ramamurthi,
F. Rominger, Angew. Chem. Int. Ed. 2009, 48, 8243-8246; Angew. Chem.
2009, 121, 8392-8395; b) A. S. Hashmi, R. Döpp, C. Lothschütz, M.
Rudolph, D. Riedel, F. Rominger, Adv. Synth. Catal. 2010, 352, 1307-1314;
c) J. J. Hirner, Y. Shi, S. A. Blum, Acc. Chem. Res. 2011, 44, 603-613;
d) L. Liu, G. B. Hammond, Chem. Soc. Rev. 2012, 41, 3129-3139; e) A.
S. K. Hashmi, M. Ghanbari, M. Rudolph, F. Rominger,
Chem. Eur. J. 2012, 18, 8113-8119; f) M. M. Hansmann, M.
Pernpointner, R. Döpp, A. S. K. Hashmi, Chem. Eur. J. 2013, 19, 15290-
15303.
NMR data can help us to assess the degree of carbene
character of the donor atoms in the new ditopic NHC ligand
in 10 and 11. The 13C signal for the carbene carbons of 10
appear at 195.7 ppm and 195.3 ppm, and those for the
[5]
carbene carbons of 11 are observed at 208.89 ppm (1JC-Ag
=
109
250.8 Hz and J107Ag
-
Ag = 18.3 Hz) and 194.48 ppm (2JC-P
= 114.3 Hz). All the carbene carbon signals are in the usual
range for normal NHC metal complexes.[21] These NMR and
structural data suggest that II and III are the major
contributing resonance structures in the ditopic NHC
complexes (Figure 5).
In summary, we have developed Pd-catalyzed or Au-
catalyzed selective arylative endo cyclization of gold acetylides to
synthesize 3,4-diphenyl isoquinoline and 2,3-diphenyl indole, as
well as six-membered mesoionic NHC complex. The mesoionic
NHC complex could further undergo deprotonation/complexation
to prepare 1,3-NHDC Au2 and Au/Ag complexes. Two key vicinal
diaurated alkene intermediates have been isolated and fully
characterized.
[6]
[7]
a) T. Wurm, J. Bucher, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv.
Synth. Catal. 2017, 359, 1637-1642; b) T. Wurm, J. Bucher, S. B.
Duckworth, M. Rudolph, F. Rominger, H. A. S. K. Hashmi, Angew. Chem.
Int. Ed. 2017, 56, 3364-3368; Angew. Chem. 2017, 129, 3413-3417; c) I.
V. Alabugin, K. Gilmore, M. Manoharan, J. Am. Chem. Soc. 2011, 133,
12608-12623; d) K. Gilmore, R. K. Mohamed, I. V. Alabugin, WIREs
Comput. Mol. Sci. 2016, 6, 487-514.
a) S. Lv, J. Wang, C. Zhang, S. Xu, M. Shi, J. Zhang, Angew. Chem. Int.
Ed. 2015, 54, 14941-14946; Angew. Chem. 2015, 127, 15154-15159; b)
J. Wang, S. Lv, H. Chen, M. Shi, J. Zhang, Dalton Trans. 2016, 45,
17091-17094;
for related syntheses of carbene complexes by
Acknowledgements
nucleophilic additions to alkyne-based Michael acceptors, see: c) T.
Wurm, J. Hornung, M. O’Neill, M. Rudolph, F. Rominger, A. S. K. Hashmi,
Chem. Eur. J. 2017, 23, 5143-5147.
Financial support from the National Natural Science Foundation
of China (No. 21671066, 21673077, 21972045) is greatly
acknowledged.
[8]
[9]
H. Chen, J. Wang, Z. Hu, S. Xu, M. Shi, J. Zhang, Chem. Commun. 2017,
53, 10835-10838.
M. B. Nielsen, Synthesis 2016, 48, 2732-2738.
[10] a) G. Dai, R. C. Larock, Org. Lett. 2001, 3, 4035-4038; b) G. Dai, R.
C. Larock, J. Org. Chem. 2003, 68, 920-928.
Keywords: gold acetylides • arylative cyclization • isoquinoline •
[11] a) D. V. Partyka, L. Gao, T. S. Teets, J. B. Updegraff, N. Deligonul, T. G.
Gray, Organometallics 2009, 28, 6171-6182; b) M. Fañanas-Mastral, F.
Aznar, Organometallics 2009, 28, 666-668; c) E. J. Fernández, A. Laguna,
M. E. Olmos, Adv. Organomet. Chem. 2005, 52, 77-141.
indole • NHC complexes
[1]
a) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45,
7896-7936; Angew. Chem. 2006, 118, 8064-8105; b) A. S. K. Hashmi, M.
Rudolph, Chem. Soc. Rev. 2008, 37, 1766-1775; c) A. S. K. Hashmi,
Angew. Chem., Int. Ed. 2010, 49, 5232-5241; Angew. Chem. 2010,
122, 5360-5369; d) N. Krause, C. Winter, Chem. Rev. 2011, 111, 1994-
2009; e) M. Bandini, Chem. Soc. Rev. 2011, 40, 1358-1367; f) M. Rudolph,
A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462; g) D.-H. Zhang,
X.-Y. Tang, M. Shi, Acc. Chem. Res. 2014, 47, 913-924; h) L.
Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953-965; i) A. S.
K. Hashmi, Acc. Chem. Res. 2014, 47, 864-876; j) L.-M. Zhang, Acc.
Chem. Res. 2014, 47, 877-888; k) R. Dore, A. M. Echavarren, Chem.
Rev. 2015, 115, 9028-9072; l) D. Pflästerer, A. S. K. Hashmi, Chem. Soc.
Rev. 2016, 45, 1331-1367; m) A. M. Asiri, A. S. K. Hashmi, Chem. Soc.
Rev. 2016, 45, 4471-4503; n) X. Zhao, M. Rudolph, A. S. K. Hashmi,
Chem. Commun. 2019, 55, 12127-12135.
[12] a) T. Kawasaki, K. Higuchi, Nat. Prod. Rep. 2005, 22, 761-793; b) A. J.
Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010, 110, 4489-
4497; c) M.-Z. Zhang, Q. Chen, G.-F. Yang, Eur. J. Med. Chem. 2015,
89, 421-441; d) Y. Zou, A. B. Smith III, J. Antibiot 2018, 71, 185-204.
[13] J. Yuan, T. Sun, X. He, K. An, J. Zhu, L. Zhao, Nat. Commun. 2016, 7,
11489.
[14] a) E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran,
G. Frenking, G. Bertrand, Science 2009, 326, 556; b) P. de Frémont, N.
M. Scott, Edwin D. Stevens, S. P. Nolan, Organometallics 2005, 24, 10,
2411-2418.
[15] M. Baron, E. Battistel, C. Tubaro, A. Biffis, L. Armelao, M. Rancan, C.
Graiff, Organometallics 2018, 37, 4213-4223.
[16] For selected reviews, see: a) R. H. Crabtree, Coord. Chem. Rev. 2013,
257, 755-766; b) J. A. Mata, F. E. Hahn, E. Peris, Chem. Sci. 2014, 5,
1723-1732; c) J. B. Watersm, J. M. Goicoechea, Coord. Chem. Rev.
2015, 293, 80-94.
[2]
a) A. S. K. Hashmi, A. M. Schuster, F. Rominger, Angew. Chem. Int. Ed.
2009, 48, 8247-8249; Angew. Chem. 2009, 121, 8396-8398; b) A. S. K.
Hashmi, Gold Bull. 2009, 42, 275-279; c) A. S. K. Hashmi, T. D.
Ramamurthi, F. Rominger, Adv. Synth. Catal. 2010, 352, 971-975; d) Y.
Chen, D. Wang, J. L. Petersen, N. G. Akhmedov, X. Shi, Chem.
Commun. 2010, 46, 6147-6149; e) X. Zeng, R. Kinjo, B. Donnadieu, G.
Bertrand, Angew. Chem. Int. Ed. 2010, 49, 942-945; Angew. Chem. 2010,
122, 954-957; f) Y. Zhu, B. Yu, Angew. Chem. Int. Ed. 2011, 50, 8329-
8332; Angew. Chem. 2011, 123, 8479-8482; g) G. Ung, M.
Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2013, 52, 758-761;
Angew. Chem. 2013, 125, 787-790; h) S. Arndt, M. M. Hansmann, P.
Motloch, M. Rudolph, F. Rominger, A. S. K. Hashmi, Chem. Eur. J. 2017,
23, 2542-2547.
[17] a) O. Guerret, S. Solé, H. Gornitzka, M. Teichert, G. Trinquier, G.
Bertrand, J. Am. Chem. Soc. 1997, 119, 6668-6669; b) E. Mas-Marzá, J.
A. Mata, E. Peris, Angew. Chem. Int. Ed. 2007, 46, 3729-3731; Angew.
Chem. 2007, 119, 3803-3805; c) A. Zanardi, J. A. Mata, E. Peris, J. Am.
Chem. Soc. 2009, 131, 14531-14537; d) S. Sabater, J. A. Mata, E. Peris,
Nat. Commun. 2013, 4, 2553.
[18] Z. Hu, X. Ma, J.i Wang, H. Wang, X. Han, M. Shi, J. Zhang,
Organometallics 2019, 38, 2132-2137.
[19] D. R. Armstrong, S. E. Baillie, V. L. Blair, N. G. Chabloz, J. Diez, J.
Garcia-Alvarez, A. R. Kennedy, S. D. Robertson, E. Hevia, Chem. Sci.
2013, 4, 4259-4266.
[20] P. de Frémont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C.
L. B. Macdonald, J. A. C. Clyburne, C. D. Abernethy, S. P.
Nolan, Organometallics 2005, 24, 6301-6309.
[3]
[4]
S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1-21.
a) A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, J. Organomet. Chem.
2009, 694, 592-597; b) G. Zhang, Y. Peng, L. Cui, L. Zhang, Angew.
Chem. Int. Ed. 2009, 48, 3112-3115; Angew. Chem. 2009, 121, 3158-
3161; c) A. S. K. Hashmi, T. D. Ramamurthi, M. H. Todd, A. S.-K. Tsang,
K. Graf, Aust. J. Chem. 2010, 63, 1619-1626; d) W. Wang, J. Jasinski,
[21] J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang,
I. J. B. Lin, Chem. Rev. 2009, 109, 3561-3598.
5
This article is protected by copyright. All rights reserved.