Int. J. Mol. Sci. 2020, 21, 4868
11 of 11
21. Sobel, R.E.; Sadar, M.D. Cell Lines Used in Prostate Cancer Research: A Compendium of Old and New
22. Pulukuri, S.M.; Gondi, C.S.; Lakka, S.S.; Jutla, A.; Estes, N.; Gujrati, M.; Rao, J.S. RNA Interference-Directed
Knockdown of Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor Inhibits
Prostate Cancer Cell Invasion, Survival, and Tumorigenicity in Vivo. J. Biol. Chem. 2005, 280, 36529–36540.
23. Ouyang, D.-Y.; Xu, L.-H.; He, X.-H.; Zhang, Y.-T.; Zeng, L.-H.; Cai, J.-Y.; Ren, S. Autophagy is Differentially
Induced in Prostate Cancer LNCaP, DU145 and PC-3 cells via Distinct Splicing Profiles of ATG5. Autophagy
24. Lee, J.T.; Steelman, L.S.; McCubrey, J.A. Phosphatidylinositol 30-Kinase Activation Leads to Multidrug
Resistance Protein-1 Expression and Subsequent Chemoresistance in Advanced Prostate Cancer Cells.
25. Singh, S.; Chitkara, D.; Mehrazin, R.; Behrman, S.W.; Wake, R.W.; Mahato, R.I. Chemoresistance in Prostate
Cancer Cells Is Regulated by miRNAs and Hedgehog Pathway. PLoS ONE 2012, 7, e40021. [CrossRef]
26. Litvinov, I.V.; Antony, L.; Dalrymple, S.L.; Becker, R.; Cheng, L.; Isaacs, J.T. PC3, but not DU145, Human
Prostate Cancer Cells Retain the Coregulators Required for Tumor Suppressor Ability of Androgen Receptor.
27. Bonomo, S.; Hansen, C.H.; Petrunak, E.M.; Scott, E.E.; Styrishave, B.; Jørgensen, F.S.; Olsen, L. Promising Tools
in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors. Sci. Rep. 2016
,
28. Bart, A.G.; Scott, E.E. Structural and Functional Effects of Cytochrome b5 Interactions with Human
Cytochrome P450 Enzymes. J. Biol. Chem. 2017, 292, 20818–20833. [CrossRef]
29. Clark, N.A.; Hafner, M.; Kouril, M.; Williams, E.H.; Muhlich, J.L.; Pilarczyk, M.; Niepel, M.; Sorger, P.K.;
Medvedovic, M. GRcalculator: An Online Tool for Calculating and Mining Dose–Response Data. BMC Cancer
30. Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and Ligand Preparation:
Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput. Aided Mol. Des. 2013, 27,
31. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.
The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]
32. Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.;
Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-Like Small Molecules and
Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [CrossRef]
33. Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A Software Program
for pK( a ) Prediction and Protonation State Generation for Drug-like Molecules. J. Comput. Aided Mol. Des.
34. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm
for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [CrossRef] [PubMed]
35. Kirton, S.B.; Murray, C.W.; Verdonk, M.L.; Taylor, R.D. Prediction of Binding Modes for Ligands in the
Cytochromes P450 and other Heme-Containing Proteins. Proteins 2005, 58, 836–844. [CrossRef] [PubMed]
36. Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.;
Maple, J.R.; et al. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem.
37. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities.
Expert Opin. Drug Discov. 2015, 10, 449–461. [CrossRef]
38. Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient
Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [CrossRef]
©
2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution