BIOCATALYTIC SEPARATION OF Α-HYDROXYPHOSPHONATES
1719
0.15 g of lipase. The mixture was stirred for 48 h at
room temperature. The lipase was filtered off, the
solution was concentrated, and the residue was
subjected to chromatography on a silica gel to form
two fractions, one of which (Rf 0.25, hexane–acetone
2:1) was optically pure alcohol (R)-Ia. Yield 48%, bp
J 4.5, J 9); 4.1.5 m (4H, CH3CH2O). 13C NMR spec-
trum (CDCl3), δ, ppm: 14.01 (CH3); 16.20 d
(CH3CH2O, J 6.0); 16.30 d (CH3CH2O, J 5.8); 22.6
(CH2); 25.99 d (CH2, J 10); 30.3 (CH2); 30.5 (CH2);
61.9 d (CH2O, J 6.0); 62.62 d (CH2O, J 7.1); 66.9 d
(PCH, J 165). Found, %: P 13.12. C10H23O4P. Calcu-
lated, %: P 13.00.
85°С (0.1 mm Hg), [α]D20 –7.0 (c 3, CHCl3). Н NMR
1
spectrum (CDCl3), δ, ppm (J, Hz): 1.36 t (6H,
CH3CH2O, J 6); 1.45 d.d (3H, CH3CP, J 7, J 18); 3.61
br (1H, OH); 4.05 m (1Н, СНР); 4.19 m (4H,
CH3CH2O). 13C NMR spectrum (CDCl3), δ, ppm: 16.2
d (СН3, J 6); 17.28 s (СН3); 61.63 d (СН2О, J 6); 62.4
d (СН2О, J 6); 62.8 d (РС, J 162.5). 31Р NMR
spectrum (CDCl3),δP, ppm:25.8 [2, 4].
(S)-Diethyl 1-acetoxyhexylphosphonate (IIc).
Yield 40%, [α]D20 +30.0 (c 2, CHCl3). 1Н NMR
spectrum (CDCl3), δ, ppm (J, Hz): 0.85 t (3H, CH3,
J 7); 1.26 t (3H, CH3CH2O, J 7); 1.28 t (3H,
CH3CH2O, J 7); 1.2–1.5 m (6H, CH2); 1.77 m (2H,
CH2); 2.06 s (3H, COCH3); 4.1 m (4H, CH3CH2O);
5.20 m (1H, PCH). 13C NMR spectrum (CDCl3), δ,
ppm: 13.9 (CH3); 16.3 d (CH3CH2, J 6.0); 16.4 d
(CH3CH2, J 6); 20.9 (COCH3); 22.8 (CH2); 25.9
(CH2); 29.3 (CH2); 31.0 (CH2); 62.0 d (CH2O, J 6.5);
62.5 d (CH2O, J 7.0); 71.0 d (PCH, J 165); 170.0
(C=O, J 6). Found, %: C 51.21; H 9.00; P 10.92.
C12H25O5P. Calculated, %: C 51.42; H 8.99; P 11.05.
Other fraction (Rf 0.55, hexane–acetone 2:1) was
(S)-diethyl 1-acetyloxyethylphosphonate (IIа). Yield
49%, [α]D20 +25.0 (с 2, CHCl3). Н NMR spectrum
1
(CDCl3), δ, ppm (J, Hz): 1.3 t (6H, CH3СН2O, J 6);
1.45 d.d (3H, CH3CНP, J 7, J 17); 2.1 s (3H, CH3CO);
4.15 m (4H, CH2O); 5.1 d.q (1H, CHP, J 7, J 8). 31Р
NMR spectrum (CDCl3),δP, ppm: 21.1 [2].
The NMR spectra were recorded on a Varian-300
instrument relative to internal TMS (1Н, 13С) and 85%
Н3РО4 in D2O (31Р).
(R)-Diethyl 1-hydroxybutylphosphonate (Ib).
Yield 47%, [α]D20 –25.0 (с 3, CHCl3), bp 120 (0.1 mm
Hg). 1Н NMR spectrum (CDCl3), δ, ppm (J, Hz): 0.9 t
(3H, CH3, J 7); 1.1–1.3 m (2H, CH2); 1.36 t (3H,
CH3CH2О, J 7); 1.38 t (3H, CH3CH2О, J 7); 1.6 m
(2H, CH2); 3.3 br (1H, OH); 3.8 m (1H, PCH); 4.2 m
(4H, OCH2). 13C NMR spectrum (CDCl3), δ, ppm:
13.6 s (CH3); 16.5 s (CH3CH2O, J 8.5); 18.5 d (CH2,
J 7.5); 33.5 d (CH2, J 5); 62 d (OCH2, J 7); 70.5 d (PC,
J 165). 31Р NMR spectrum (CDCl3), δP: 26.
REFERENCES
1. Hammerschmidt, F. and Wuggenig, F., Phosph., Sulf.
and Silicon, 1998, vol. 141, no. 1, p. 231.
2. Zurawinski, R., Nakamura, K., Drabowicz, J.,
Kiełbasinski, P., and Mikołajczyk, M., Tetrahedron:
Asym., 2001, vol.12, no. 22, p. 3139.
3. Zhang, Y., Yuan, C., and Li, Z., Tetrahedron, 2002,
vol. 58, no. 15, p. 2973.
4. Kolodiazhnyi, O.I., Tetrahedron: Asym., 2005, vol. 16,
no. 20, p. 3295.
LPSD-30_e.pdf.
6. Bakke, M., Takizawa, M., Sugai, T., and Ohta, H., J. Org.
Chem., 1998, vol. 63, no. 20, p. 6929.
(S)-Diethyl 1-acetoxybutylphosphonate (IIb).
Yield 47%. [α]D20 +30 (c 3, CHCl3). 1Н NMR spectrum
(CDCl3), δ, ppm (J, Hz): 0.89 t (3H, CH3, J 7); 1.28 t
(3H, CH3CH2O, J 7); 1.29 t (3H, CH3CH2O, J 7); 1.40
m (2H, CH2); 1.77 m (2H, CH2); 2.08 s (3H, COCH3);
4.10 m 4H, CH2O); 5.25 d.t (lH, PCH, J 4.9, J 8.4). 31Р
NMR spectrum (CDCl3), δP, ppm: 21 [1, 2].
7. Kolodyazhnyi, O.I., Zh. Obshch. Khim., 2009, vol. 79,
(R)-Diethyl 1-hydroxyhexylphosphonate (Ic).
Yield 40%, bp 160°С (0.1 mm Hg). [α]D20 –20.0 (c 3,
CHCl3). Н NMR spectrum (CDCl3), δ, ppm (J, Hz):
0.88 t (3H, CH3, J 6.5); 1.315 t (3H, CH3CH2O, J 6);
1.32 t (3H, CH3CH2O, J 6); 1.4 m (2Н, CH2); 1.6–1.8
m (4H, CH2CH2); 4.5 br (1H, OH); 3.85 d.t (1H, PCH,
no. 9, p. 1578.
8. Kolodyazhnyi, O.I., Kolodyazhnaya, O.O., and Ku-
khar, V.P., Zh. Obshch. Khim., 2006, vol. 76, no. 8,
p. 1398.
1
9. Dale, J.A. and Mosher, H.S., J. Am. Chem. Soc., 1973,
vol. 95, no. 2, p. 512.
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 80 No. 8 2010