Dalton Transactions
Paper
vation and pyridyl C–H bond polarisation ensuing from the Allan, Mark Warren, Harriott Nowell, and Sarah Barnett) for
presence of the lipophilic and electronegative iodine substitu- technical support.
ent, along with a possible contribution from C–I⋯X− halogen
bonding interactions for the iodo-functionalised [2]rotaxane
1
4·Zn(ClO ) . In general the presence of the iodine substituent
4 2
Notes and references
results in only modest improvements in the receptor’s anion
recognition capabilities, suggesting that the C–I⋯X XB contri-
bution to anion binding by the [2]rotaxane 14·Zn(ClO ) is rela-
tively minor, with Coulombic and C–H⋯X and N–H⋯X HB
interactions playing a more dominant role, or that the steric
requirements of the iodine atom do not allow for favourable
XB and HB interactions between the rotaxane’s macrocycle
component isophthalamide and axle component iodopyridyl
groups to occur in a fully synergistic manner.
−
1 J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor
Chemistry, Royal Society of Chemistry, 2006.
2 N. H. Evans and P. D. Beer, Angew. Chem., Int. Ed., 2014, 53,
11716–11754.
3 N. Busschaert, C. Caltagirone, W. Van Rossom and
P. A. Gale, Chem. Rev., 2015, 115, 8038–8155.
4 A. Caballero, F. Zapata and P. D. Beer, Coord. Chem. Rev.,
2013, 257, 2434–2455.
4
2
−
−
5
S. K. Kim and J. L. Sessler, Chem. Soc. Rev., 2010, 39, 3784–
809.
6 A. J. McConnell and P. D. Beer, Angew. Chem., Int. Ed.,
012, 51, 5052–5061.
M. J. Deetz, R. Shukla and B. D. Smith, Tetrahedron, 2002,
8, 799–805.
M. J. Barrell, D. A. Leigh, P. J. Lusby and A. M. Z. Slawin,
Angew. Chem., Int. Ed., 2008, 47, 8036–8039.
C. Allain, P. D. Beer, S. Faulkner, M. W. Jones,
A. M. Kenwright, N. L. Kilah, R. C. Knighton, T. J. Sørensen
and M. Tropiano, Chem. Sci., 2013, 4, 489–493.
3
Conclusions
2
Three new heteroditopic [2]rotaxane ion-pair host systems
which contain axle separated interlocked binding cavities for
an anion and a transition metal cation were synthesised using
7
8
9
5
1
a copper(II) directed passive metal template strategy. H NMR
titration experiments revealed the [2]rotaxanes are capable of
cooperatively binding halide and nitrate anions in the pres-
ence of a co-bound zinc(II) cation. The hydrogen-bonding [2]
4 2
rotaxane 8·Zn(ClO ) was found to bind chloride and bromide
1
0 M. J. Langton, O. A. Blackburn, T. Lang, S. Faulkner and
P. D. Beer, Angew. Chem., Int. Ed., 2014, 53, 11463–
1
selectively over nitrate and iodide anions in a competitive
protic CDCl : CD OD 1 : 1 solvent mixture. The related [2]rotax-
3
3
1466.
1 R. C. Knighton and P. D. Beer, Chem. Commun., 2014, 50,
540–1542.
2 N. H. Evans, C. J. Serpell and P. D. Beer, Chem. Commun.,
011, 47, 8775–8777.
3 L. M. Hancock, E. Marchi, P. Ceroni and P. D. Beer, Chem.
Eur. J., 2012, 18, 11277–11283.
ane host system 14·Zn(ClO
pyridine XB donor group, and a C–H HB control system 15·Zn
ClO were both found to display enhanced affinities for
4 2
) which contains a potential iodo-
1
1
1
1
1
(
4 2
)
bromide and iodide with respect to chloride in a more com-
2
petitive CDCl : CD OD : D O 45 : 45 : 10 aqueous–organic
3
3
2
solvent mixture. Subtle differences between the anion reco-
gnition properties of the XB functionalised rotaxane 14·Zn
–
4 J. Lehr, T. Lang, O. A. Blackburn, T. A. Barendt,
(
ClO4)2 and HB analogue 15·Zn(ClO4)2 were observed,
suggesting that the XB contribution to anion binding by the
2]rotaxane 14·Zn(ClO is relatively minor, with Coulombic
S. Faulkner, J. J. Davis and P. D. Beer, Chem. – Eur. J., 2013,
19, 15898–15906.
[
4 2
)
1
1
1
1
5 J. Y. C. Lim, M. J. Cunningham, J. J. Davis and P. D. Beer,
Dalton Trans., 2014, 43, 17274–17282.
6 A. Brown, M. J. Langton, N. L. Kilah, A. L. Thompson and
P. D. Beer, Chem. – Eur. J., 2015, 21, 17664–17675.
7 M. J. Langton, I. Marques, S. W. Robinson, V. Félix and
P. D. Beer, Chem. – Eur. J., 2016, 22, 185–192.
8 In a related example, an ion-pair rotaxane host system
which binds anions in the presence of a co-bound tetra-
butylammonium cation has recently been reported:
J. R. Romero, G. Aragay and P. Ballester, Chem. Sci., 2016, 8,
−
−
and C–H⋯X and N–H⋯X HB interactions playing a more
dominant role.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
491–498.
We thank the European Research Council (under the 19 S. Saha, I. Ravikumar and P. Ghosh, Chem. Commun., 2011,
th
European Union’s
7
Framework programme (FP7/
47, 6272–6274.
2
007–2013), ERC advanced grant agreement number 267426) 20 L. C. Gilday and P. D. Beer, Chem. – Eur. J., 2014, 20, 8379–
and the University of Oxford for funding. We also thank
8385.
Dr Kirsten Christensen and Dr Amber Thompson for their gen- 21 C. J. Massena, A. M. S. Riel, G. F. Neuhaus, D. A. Decato
erous help and advice with crystallographic data collection and and O. B. Berryman, Chem. Commun., 2015, 51, 1417–1420.
refinement, Diamond Lightsource for an award of beamtime 22 V. Amendola, G. Bergamaschi, M. Boiocchi, N. Fusco,
on I19 (MT13639) and the beamline scientists (Drs David
M. V. L. Rocca, L. Linati, E. L. Presti, M. Mella,
This journal is © The Royal Society of Chemistry 2017
Dalton Trans.