ChemComm
Please do not adjust margins
Page 4 of 5
Journal Name
ARTICLE
The toxicity of the most promising compound, 4g, toward Hela cells 4.
081-1083.
DOI: 10.1039/C9CC00857H
I. Yelin and R. Kishony, Cell, 2018, 172, 1136-1136.
1
was evaluated. The electron scanning microscopy images of HeLa cell
5
6
.
.
morphology (Fig. S4b, c, ESI†) were unaltered after treatment with
molecule 4g compared with the control (Fig. S4a, ESI†). HeLa cells
were evaluated by staining with calcein AM and PI to visualize LIVE
J. W. Costerton, P. S. Stewart and E. P. Greenberg, Science, 1999, 284,
1
318-1322.
7
.
R. M. Donlan, Emerg. Infect. Dis., 2002, 8, 881-890.
and DEAD cells by fluorescence microscopy. The cells treated with 8.
4
K. A. Brogden, Nat. Rev. Microbiol., 2005, 3, 238-250.
R. E. W. Hancock and G. Diamond, Trends Microbiol., 2000, 8, 402-
g fluoresced green (Fig. S5d-I, ESI†), and the same phenomenon was 9.
4
10.
A. Menendez, R. B. Ferreira and B. B. Finlay, Nat. Immunol., 2010, 11,
9-50.
observed with the negative control (Fig. S5a–c, ESI†). The results
confirmed the less-toxic nature of the bacterial membrane-disrupted
compound 4g (concentration 64 × MICS. aureus).
1
0.
1.
4
1
D. M. E. Bowdish, D. J. Davidson and R. E. W. Hancock, Curr. Protein.
Pept. Sc., 2005, 6, 35-51.
A. K. Marr, W. J. Gooderham and R. E. W. Hancock, Curr. Opin.
Pharmacol., 2006, 6, 468-472.
A. R. Akram, N. Avlonitis, A. Lilienkampf, A. M. Perez-Lopez, N.
McDonald, S. V. Chankeshwara, E. Scholefield, C. Haslett, M. Bradley
and K. Dhaliwal, Chem. Sci., 2015, 6, 6971-6979.
I. M. Herzog and M. Fridman, MedChemComm, 2014, 5, 1014.
R. E. W. Hancock, Drugs, 1999, 57, 469-473.
S. Lin, J.-J. Koh, T. T. Aung, F. Lim, J. Li, H. Zou, L. Wang, R.
Lakshminarayanan, C. Verma, Y. Wang, D. T. H. Tan, D. Cao, R. W.
Beuerman, L. Ren and S. Liu, J. Med. Chem., 2017, 60, 1362-1378.
M. Su, D. Xia, P. Teng, A. Nimmagadda, C. Zhang, T. Odom, A. Cao,
Y. Hu and J. Cai, J. Med. Chem., 2017, 60, 8456-8465.
E. Zhang, P. Bai, D. Cui, W. Chu, Y. Hua, Q. Liu, H. Yin, Y. Zhang, S.
Qin and H. Liu, Eur J Med Chem, 2018, 143, 1489-1509.
W. Chu, P. Bai, Z. Yang, D. Cui, Y. Hua, Y. Yang, Q. Yang, E. Zhang
and S. Qin, Eur. J. Med. Chem., 2018, 143, 905-921.
A mouse model of MRSA skin infection was established to evaluate
2
5
the antibacterial activity in vivo (Fig. S6) . Kunming mice were 12.
purchased from the Animal Center of Zhengzhou University
1
3.
(Zhengzhou, China), and all animal procedures were performed in
accordance with the Guidelines for Care and Use of Laboratory
Animals of Zhengzhou University and approved by the Animal Ethics
1
4.
Committee of Zhengzhou University. Compound 4g showed similar 15.
activity at a dose of 6.6 mg/kg/d with vancomycin (3.3 mg/kg/d) (Fig. 16.
7
). The antibacterial activity of compound 4g was improved with an
increased dose. The skin tissue samples were imaged by haematoxylin
and eosin staining. In normal (healthy, uninfected) skin samples, the
1
7.
layers could be seen clearly (Fig. S7a, ESI†); while, MRSA-infected 18.
skin showed a serious inflammatory reaction. The epidermis separated
1
9.
from the dermis, and multifocal areas of inflammatory cell infiltration
of the dermis as well as the subcutaneous tissue were observed (Fig.
S7b, ESI†). The width of the skin was narrower with 4g-treated
2
0.
P. Bai, S. Qin, W. Chu, Y. Yang, D. Cui, Y. Hua, Q. Yang and E. Zhang,
Eur. J. Med. Chem., 2018, 155, 925-945.
sections (Fig. S7c, ESI†) than with the infected samples. 21.
Vancomycin-treated infected skin also showed minimal inflammation
J. Hoque, M. M. Konai, S. S. Sequeira, S. Samaddar and J. Haldar, J.
Med. Chem., 2016, 59, 10750-10762.
2
2.
(Fig. S7e, ESI†). These data indicated that 4g was efficient at reducing
MRSA infection in vivo in a mouse model.
2
3.
R. A. Allen, M. C. Jennings, M. A. Mitchell, S. E. Al-Khalifa, W. M.
Wuest and K. P. C. Minbiole, Bioorg. Med. Chem. Lett., 2017, 27, 2107-
2112.
M. Wu and R. E. Hancock, J. Biol. Chem., 1999, 274, 29-35.
N. Malachowa, S. D. Kobayashi, K. R. Braughton and F. R. Deleo,
Methods Mol. Biol., 2013, 1031, 109-116.
A series of amphiphilic molecules linked by an aromatic nucleus were
designed and synthesized as AMP-mimetics. Some compounds
showed high membrane selectivity (HC50/MICS. aureus of 4g and 5e 24.
2
5.
were 2438 and >2560, respectively) and excellent antibacterial
activity against a panel of bacteria including various multidrug-
resistant isolates. Mechanistic studies and SEM images indicated that
these compounds depolarized and permeabilized bacterial membranes,
leading to irregular cell morphology and the rapid death of bacteria.
Lead compound 4g possesses optimal attributes, such as stability in
plasma and trypsin, the ability to disrupt established S. aureus
biofilms, lower drug resistance, high in vivo efficacy against MRSA,
and no detectable toxicity. Overall, these results suggest that
amphiphilic molecules linked by an aromatic nucleus are highly
promising compounds for development into pharmaceuticals.
This research was supported the National Natural Science Foundation
of China (No. 21702190), the China Postdoctoral Science Foundation
(2018M640685), and Henan province (17A350004, 172102310227).
Conflicts of interest
There are no conflicts of interest to declare.
References
1
.
E. M. Hetrick and M. H. Schoenfisch, Chem. Soc. Rev., 2006, 35, 780-
89.
7
2
.
K. Bush, P. Courvalin, G. Dantas, J. Davies, B. Eisenstein, P. Huovinen,
G. A. Jacoby, R. Kishony, B. N. Kreiswirth, E. Kutter, S. A. Lerner, S.
Levy, K. Lewis, O. Lomovskaya, J. H. Miller, S. Mobashery, L. J.
Piddock, S. Projan, C. M. Thomas, A. Tomasz, P. M. Tulkens, T. R.
Walsh, J. D. Watson, J. Witkowski, W. Witte, G. Wright, P. Yeh and H.
I. Zgurskaya, Nat. Rev. Microbiol., 2011, 9, 894-896.
3
.
H. Hanberger, S. Walther, M. Leone, P. S. Barie, J. Rello, J. Lipman, J.
C. Marshall, A. Anzueto, Y. Sakr, P. Pickkers, P. Felleiter, M. Engoren,
J. L. Vincent and E. I. G. o. Investigators, Int. J. Antimicrob. Agents,
2
011, 38, 331-335.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 4
Please do not adjust margins