Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
1.355 g cm23, m = 0.707 mm21, 7778 reflections measured, 5756 observed
[I > 3.00 s(I)]. Solution by direct methods with SIR92, expanded using
Fourier Techniques with DIRDIF94. Full-matrix least-square refinement on
F with all non-hydrogen atoms anistropic and hydrogens included but not
refined. Final R and Rw values on observed data were 0.050 and 0.051.
For 3: C32H39N4O2BCu, M
= 586.04, orthorhombic, space group
P212121, a = 9.879(2), b = 30.374(9), c = 9.769(2) Å, U = 2931(1) Å3,
l = 0.71069 Å, Z = 4, Dc = 1.328 g cm23, m = 0.781 mm21. 3808
reflections measured, 2857 observed [I > 3.00 s(I)]. Solution methods and
refinements as for 2. Final R and Rw values on observed data were 0.052 and
crystallographic files in .cif format.
§
The pH dependency is independent on the pKa curve of [Cu-
(tach)(H2O)2]2+ [ref. 7(b)], indicating that the attack of internal coordinated
OH2 can be neglected.
1 E. L. Hegg and J. N. Burstyn, J. Am. Chem. Soc., 1995, 117, 7015.
2 B. K. Takasaki, J. H. Kim, E. Rubin and J. Chin, J. Am. Chem. Soc.,
1993, 115, 1157.
Scheme 1
ion, as shown in Fig. 2. Thus the complex cation of 2,
[Cu(tach)(gly-gly)]+, is an intermediate of the hydrolysis of the
N-terminal peptide bond promoted by CuII–triamine complex,
and is clear evidence for the activation of the CNO group by the
metal centre.
On the basis of the intermediate structure a reasonable
mechanism may be postulated for the peptide hydrolysis at near
physiological pH, as shown in Scheme 1. The initial step
involves the rapid replacement of the water molecule by the N-
terminal amino group of the peptide, which becomes chelated to
the copper(ii) ion. The carbonyl group is then activated to attack
by external OH2. The mechanism is supported by the fact that
the rate of hydrolysis increases with increasing hydroxide
concentration.§
Experiments to prove this mechanism via solution chemistry
studies and kinetic measurements of the hydrolysis of peptides
by CuII–triamine complexes are presently being conducted.
The support of this work by a JSPS postdoctoral fellowship to
X. S. T. from the Japan Society for the Promotion of Science
(No. P97370) and by a Grant-in-Aid for Science Research (No.
09440224) from the Ministry of Education, Science, Sports and
Culture of Japan is gratefully acknowledged.
3 (a) K. V. Reddy, A. R. Jacobson, J. I. Kung and L. M. Sayre, Inorg.
Chem., 1991, 30, 3520; (b) L. M. Sayre, K. V. Reddy, A. R. Jacobson
and W. Tang, Inorg. Chem., 1992, 31, 935; (c) T. H. Fife and T. J.
Przystas, J. Am. Chem. Soc., 1986, 108, 4631; (d) J. T. Groves and R. R.
Chambers, Jr., J. Am. Chem. Soc., 1984, 106, 630; (e) B. F. Duerr and
A. W. Czarnik, J. Chem. Soc., Chem. Commun., 1990, 1707; (f) J. Chin,
V. Jubian and K. Mrejen, J. Chem. Soc., Chem. Commun., 1990, 1326;
(g) L. Meriwether and F. H. Westheimer, J. Am. Chem. Soc., 1956, 78,
5119; (h) W. A. Connor, M. M. Jones and D. L. Tuleen, Inorg. Chem.,
1965, 4, 1129.
4 I. E. Burgeson and N. M. Kostic, Inorg. Chem., 1991, 30, 4299; L. Zhu
and N. M. Kostic, J. Am. Chem. Soc., 1993, 115, 4566; L. Zhu, L. Qin,
T. N. Parac and N. M. Kostic, J. Am. Chem. Soc., 1994, 116, 5218.
5 D. A. Buckingham, G. S. Binney, C. R. Clark, B. Garnham and J.
Simpson, Inorg. Chem., 1985, 24, 135.
6 M. Yashiro, T. Takarada, S. Miyama and M. Komiyama, J. Chem. Soc.,
Chem. Commun., 1994, 1757.
7 T. Itoh, H. Hisada, T. Sumiya, M. Hosono, Y. Usui and Y. Fujii, Chem.
Commun., 1997, 677; T. Itoh, H. Hisada, Y. Usui and Y. Fujii, Inorg.
Chem. Acta, 1998, 238, 51.
8 L. Cronin, B. Greener, S. P. Foxon, S. L. Health and P. H. Walton,
Inorg. Chem., 1997, 36, 2594.
9 H. C. Freeman, G. Robinson and J. C. Schoone, Acta Crystallogr., 1964,
17, 719.
10 W. A. Franks and D. van der Helm, Acta Crystallogr., Sect. B, 1971, 27,
1299.
Notes and references
11 D. van der Helm and H. B. Nicholas, Jr., Acta Crystallogr., Sect. B,
1970, 26, 1858.
12 D. A. Buckingham, P. A. Marzilli, I. E. Maxwell, W. T. Dwyer, A. M.
Sargeson, M. Fehlman and H. C. Freeman, J. Chem. Soc., Chem.
Commun., 1968, 488.
† Glycylglycine (2 mM) was dissolved in water and incubated with 1 (2
mM) at pH 8.1 ± 0.1 (50 mM HEPES) and 70 °C for 24 h. Samples were
analyzed in a JASCO Model FP-920 Intelligent Fluorescence Detector.
‡ Crystal data for 2: C35H46N5O4BCu, M = 675.14, triclinic, space group
¯
P1, a = 10.238(4), b = 18.026(7), c = 10.065(3) Å, a = 92.29(3), b =
113.71(3), g = 101.13(3)°, U = 1654(1) Å3, l = 0.71069 Å, Z = 2, Dc
=
Communication 9/01569H
882
Chem. Commun., 1999, 881–882