Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
indicating kinetically possible reaction and the rate-
Journal Name
15.
16.
17.
18.
a
28, 489-519.
DOI: 10.1039/D0CC05164K
determining step of the process. The height of the barrier is
due to the lack of samarium involvement in the proton
transfer as well as the decrease of the Sm-O stabilizing
interaction. This yields to D, whose formation is favoured by
9.0 kcal/mol from the entrance. Similar calculations were
performed for the formation of the pyridine analogue (see
ESI). The mechanism appears to be similar but all
intermediates are shifted up in energy by up to 10.6 kcal/mol
for the rate determining step TS and the final product
formation. This is in line with the experimental observation
that higher temperature is required to drive the reaction. The
deprotonation of the alcohol is then assisted by the pyridine
base as the solvent as well as by the coordination of the
samarium ion.
In conclusion, this article reports the easy formation of
carbinols from benzophenone and N-heterocycles, such as
bipyridine, phenanthroline and even neat pyridine. The
equilibrium between the ketyl radical and its coupled form
(pinacolate) is the key step of this atom-economical method
that allows direct radical coupling with the N-heterocycle
followed by an intra-molecular hydrogen transfer without any
other coupling additives. The mechanism was confirmed by
theoretical computations and further work is being conducted
to enlarge the scope of the reaction with substrates more
difficult to reduce.
A. Harikrishnan, J. Sanjeevi and C. Ramaraj Ramanathan,
Org. Biomol. Chem., 2015, 13, 3633-3647.
C. H. Tilford, R. S. Shelton and M. G. v. Campen, J. Am.
Chem. Soc., 1948, 70, 4001-4009.
J. A. Weitgenant, J. D. Mortison, D. J. O'Neill, B. Mowery,
A. Puranen and P. Helquist, J. Org. Chem., 2004, 69, 2809-
2815.
J. A. Weitgenant, J. D. Mortison and P. Helquist, Org. Lett.,
2005, 7, 3609-3612.
G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96,
307-338.
K. C. Nicolaou, S. P. Ellery and J. S. Chen, Angew. Chem.
Int. Ed., 2009, 48, 7140-7165.
M. Szostak, N. J. Fazakerley, D. Parmar and D. J. Procter,
Chem. Rev., 2014, 114, 5959-6039.
X. Just-Baringo and D. J. Procter, Acc. Chem. Res., 2015,
48, 1263-1275.
C. Beemelmanns and H.-U. Reissig, Chem. Soc. Rev., 2011,
40, 2199-2210.
S. Shi and M. Szostak, Molecules, 2017, 22, 2018.
H. B. Kagan, J. Alloys Compd., 2006, 408, 421-426.
G. Nocton, W. L. Lukens, C. H. Booth, S. S. Rozenel, S. A.
Melding, L. Maron and R. A. Andersen, J. Am. Chem. Soc.,
2014, 136, 8626-8641.
G. Nocton and L. Ricard, Chem. Commun., 2015, 51, 3578-
3581.
A. Jaoul, G. Nocton and C. Clavaguéra, Chem. Phys. Chem.,
2017, 18, 2688-2696.
T. Cheisson, L. Ricard, F. W. Heinemann, K. Meyer, A.
Auffrant and G. Nocton, Inorg. Chem., 2018, 57, 9230-
9240.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
Conflicts of interest
There are no conflicts to declare.
31.
P. Girard, R. Couffignal and H. B. Kagan, Tet. Lett., 1981,
22, 3959-3960.
32.
33.
H. Farran and S. Hoz, J. Org. Chem., 2009, 74, 2075-2079.
T. Shida, Electronic absorption spectra of radical ions,
Elsevier Science Ldt., Amsterdam and New York, 1988.
Y. Kamochi and T. Kudo, Heterocycles, 1993, 36, 2383-
2396.
J. C. Berthet, P. Thuery and M. Ephritikhine, CCDC 959301:
Experimental Crystal Structure Determination, 2013, DOI:
10.5517/cc11676p.
X. Zhao, L. Perrin, D. J. Procter and L. Maron, Dalton
Trans., 2016, 45, 3706-3710.
C. E. Kefalidis, L. Perrin and L. Maron, Eur. J. Inorg. Chem.,
2013, 2013, 4042-4049.
Notes and references
1.
Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D.
Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M.
R. Collins, Y. Ishihara and P. S. Baran, Nature, 2012, 492,
95-99.
34.
35.
2.
3.
P. Guo, J. M. Joo, S. Rakshit and D. Sames, J. Am. Chem.
Soc., 2011, 133, 16338-16341.
M. Schlosser and F. Mongin, Chem. Soc. Rev., 2007, 36,
1161-1172.
36.
37.
38.
4.
5.
6.
7.
C. M. Jephcott, J. Am. Chem. Soc., 1928, 50, 1189-1192.
N. O. Calloway, Chem. Rev., 1935, 17, 327-392.
P. H. Gore, Chem. Rev., 1955, 55, 229-281.
G. A. Olah, Friedel-Crafts Chemistry, Willey, New York,
1973.
D. Werner, X. Zhao, S. P. Best, L. Maron, P. C. Junk and G.
B. Deacon, Chem. Eur. J., 2017, 23, 2084-2102.
8.
T. Bresser, G. Monzon, M. Mosrin and P. Knochel, Organic
Process Research & Development, 2010, 14, 1299-1303.
V. Snieckus, Chem. Rev., 1990, 90, 879-933.
K. R. Campos, Chem. Soc. Rev., 2007, 36, 1069-1084.
M. Ye, G.-L. Gao and J.-Q. Yu, J. Am. Chem. Soc., 2011,
133, 6964-6967.
9.
10.
11.
12.
13.
14.
J. C. Lewis, R. G. Bergman and J. A. Ellman, J. Am. Chem.
Soc., 2007, 129, 5332-5333.
I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy
and J. F. Hartwig, Chem. Rev/, 2010, 110, 890-931.
M. A. J. Duncton, Med. Chem. Comm, 2011, 2, 1135-1161.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins