∆-[Ru(phen)2(dppz)]2ϩ complex, Dupureur and Barton pro-
posed major groove binding.15 This conclusion was based on
the observation of an NOE from the H12 of the metal complex
to the A5H8 of the hexanucleotide. In our minor groove binding
model, the metal complex H12 proton is positioned near the
centre of the stacked bases. Consequently, it is possible that an
NOE could be observed from the H12 protons to a major
groove proton. Indeed, we observed a weak NOE from the H12
protons to the T2Me protons.
3 K. E. Erkkila, D. T. Odom and J. K. Barton, Chem. Rev., 1999, 99,
2777.
4 A. E. Friedman, J.-C. Chambron, J.-P. Sauvage, N. J. Turro and
J. K. Barton, J. Am. Chem. Soc., 1990, 112, 4960.
5 R. M. Hartshorn and J. K. Barton, J. Am. Chem. Soc., 1992, 114,
5919.
6 C. Hiort, P. Lincoln and B. Nordén, J. Am. Chem. Soc., 1993, 115,
3448.
7 Y. Jenkins and J. K. Barton, J. Am. Chem. Soc., 1992, 114, 8736.
8 L. S. Schulman, S. H. Bossmann and N. J. Turro, J. Phys. Chem.,
1995, 99, 9283.
Lincoln et al. have suggested that dppz-based complexes bind
DNA in a cooperative manner.40 This indicates that there could
be two metal complexes bound to 50% of the hexanucleotide in
the experiments where the ratio of the metal complex:hexa-
nucleotide duplex is 0.9. However, the distribution of the
bound metal complex should not affect the proposed binding
model. The minor groove binding mode shown in Fig. 7 is
only a qualitative model, based on observed NOEs from two
or more binding sites.
While it may not appear that intercalation would be favoured
in the minor groove on steric grounds, many DNA binding
studies of relatively bulky molecules have demonstrated the
flexibility of DNA. For example, Önfelt et al. reported that the
bis-intercalating complex [µ-c4(cpdppz)2-(phen)4Ru2]4ϩ inter-
calates such that both Ru(phen)2 moieties are in the same
groove.41 For this type of binding to occur the ruthenium bis-
intercalator must thread through the DNA strands, thereby
demonstrating the ‘large amplitude of conformational change’
that can occur in DNA.41
9 C. Moucheron, A. Kirsch-De Mesmaeker and S. Choua, Inorg.
Chem., 1997, 36, 584.
10 C. S. Chow and J. K. Barton, Methods Enzymol., 1992, 212, 219.
11 C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H.
Bossman, N. J. Turro and J. K. Barton, Science, 1993, 262, 1025.
12 E. D. A. Stemp, M. R. Arkin and J. K. Barton, J. Am. Chem. Soc.,
1995, 117, 2375.
13 C. G. Coates, L. Jacquet, J. J. McGarvey, S. E. J. Bell, A. H. R.
Al-Obaidi and J. M. Kelly, J. Am. Chem. Soc., 1997, 119, 7130.
14 C. M. Dupureur and J. K. Barton, J. Am. Chem. Soc., 1994, 116,
10286.
15 C. M. Dupureur and J. K. Barton, Inorg. Chem., 1997, 36, 33.
16 R. E. Holmlin, E. D. A. Stemp and J. K. Barton, Inorg. Chem., 1998,
37, 29.
17 P. Lincoln, A. Broo and B. Nordén, J. Am. Chem. Soc., 1996, 118,
2644.
18 E. Tuite, P. Lincoln and B. Nordén, J. Am. Chem. Soc., 1997, 119, 239.
19 M. Eriksson, M. Leijon, C. Hiort, B. Nordén and A. Graslund,
Biochemistry, 1994, 33, 5031.
20 P. Lincoln and B. Nordén, J. Phys. Chem. B, 1998, 102, 9583.
21 J. G. Collins, J. R. Aldrich-Wright, I. D. Greguric and P. A.
Pellegrini, Inorg. Chem., 1999, 38, 5502.
It has been clearly demonstrated that metallointercalators
based on the 9,10-phenanthrenequinone diimine (phi) ligand
intercalate from the major groove.42–45 In particular, as the
complex ∆-[Rh(phen)2phi]3ϩ intercalates from the major
groove,42 the results of this study could indicate that the struc-
ture of the intercalating ligand plays an important role in
determining the DNA binding site. For the phi-based inter-
calators, the long axis of the aromatic rings run parallel to the
long axis of the base-pairs, whereas for the dppz complexes
the long axis of the aromatic rings run perpendicular to the
long axis of the base-pairs. This difference in shape could lead
to the observed difference in the binding modes. However, this
proposal is not consistent with the groove binding preference of
organic drugs that bind DNA by intercalation. For example,
both actinomycin (long axis of the aromatic rings parallel to the
long axis of the base-pairs) and the anthracycline drugs (aro-
matic rings perpendicular to the base-pairs) intercalate from the
minor groove,46 as do most positively charged organic drugs.46
Hence, the difference in the preferred groove for binding by the
metallointercalators may be related to the shape of the inter-
calating ligand, but probably only as a consequence of the steric
bulk provided by the remainder of the octahedral complex.
Haq et al. have demonstrated that the intercalative binding
of [Ru(phen)2dppz]2ϩ with DNA is entirely entropically driven,
with hydrophobic interactions, changes in hydration and the
release of counter ions being the dominant driving forces.47
Hence, while the steric interactions of the non-intercalating
part of the complex with the DNA grooves may affect the bind-
ing preference, the sequestering of the phenanthroline ligands
from the water is also probably important. Rhodium() com-
plexes containing the phi ligand and either aromatic or aliphatic
ancillary ligands have been shown to intercalate from the major
groove.42–45 However, it has not been established whether dppz-
based complexes with non-aromatic ancillary ligands will inter-
calate from the DNA minor groove in a similar fashion to
22 M. Yamada, Y. Tanaka, Y. Yoshimoto, S. Kuroda and I. Shimao,
Bull. Chem. Soc. Jpn., 1992, 65, 1006.
23 SMART, SAINT, SADABS and XPREP. Area detector
control and data integration and reduction software, Bruker
Analytical X-ray Instruments Inc., Madison, WI, USA, 1995.
24 G. M. Sheldrick, SHELXS-86, in Crystallographic Computing 3,
G. M. Sheldrick, C. Krüger and P. Goddard, ed., Oxford University
Press, Oxford, 1985, pp. 175–189.
25 teXsan, Crystal Structure Analysis Package, Molecular Structure
Corporation, Houstan, TX, 1985 and 1992.
26 International Tables for X-Ray Crystallography, vol. 4, Kynoch
Press, Birmingham, 1974.
27 J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781.
28 D. C. Creagh and W. J. McAuley, International Tables for
Crystallography, A. J. C. Wilson, ed., Kluwer Academic Publishers,
Boston, 1992, vol. C, Table 4.2.6.8, pp. 219–222.
29 D. C. Creagh and J. H. Hubbell, International Tables for
Crystallography, A. J. C. Wilson, ed., Kluwer Academic Publishers,
Boston, 1992, vol. C, Table 4.2.4.3, pp. 200–206.
30 C. K. Johnson, ORTEP, A Thermal Ellipsoid Plotting Program,
Oak Ridge National Laboratories, Oak Ridge, TN, 1965.
31 T. Maniatis, E. F. Fritsch and J. Sambrook, Molecular Cloning, Cold
Spring Harbor Laboratory Press, New York, 1982.
32 D. J. States, R. A. Haberkorn and D. J. Ruben, J. Magn. Reson.,
1982, 48, 286.
33 M. Piotto, V. Saudek and V. Sklenar., J. Biomol. NMR, 1992, 2, 661.
34 HyperChem, Release 5.01 for Windows Molecular Modelling
System, HyperCube Inc., Ontario, Canada, 1996.
35 J. G. Collins, A. D. Sleeman, J. R. Aldrich-Wright, I. Greguric and
T. W. Hambley, Inorg. Chem., 1998, 37, 3133.
36 R. M. Scheek, R. Boelens, N. Russo, J. H. van Boom and
R. Kaptein, Biochemistry, 1984, 23, 1371.
37 J. Feigon, W. Leupin, W. A. Denny and D. R. Kearns, Biochemistry,
1983, 22, 5943.
38 D. J. Patel, L. Shapiro and D. Hare, J. Biol. Chem., 1986, 261, 1223.
39 J. Feigon, W. A. Denny, W. Leupin and D. R. Kearns, J. Med. Chem.,
1984, 27, 450.
40 P. Lincoln, E. Tuite and B. Nordén, J. Am. Chem. Soc., 1997, 119,
1454.
41 B. Önfelt, P. Lincoln and B. Nordén, J. Am. Chem. Soc., 1999, 121,
10846.
[Ru(Me2phen)2dppz]2ϩ
.
42 S. S. David and J. K. Barton, J. Am. Chem. Soc., 1993, 115, 2984.
43 J. G. Collins, T. P. Shields and J. K. Barton, J. Am. Chem. Soc., 1994,
116, 9840.
44 T. P. Shields and J. K. Barton, Biochemistry, 1995, 34, 15049.
45 B. P. Hudson and J. K. Barton, J. Am. Chem. Soc., 1998, 120, 6877.
46 S. Neidle, DNA Structure and Recognition, IRL Press, Oxford, 1994.
47 I. Haq, P. Lincoln, D. Suh, B. Nordén, B. Z. Chowdhry and
J. B. Chaires, J. Am. Chem. Soc., 1995, 117, 4788.
References
1 D. S. Sigman, A. Mazumder and D. M. Perrin, Chem. Rev., 1993, 93,
2295.
2 B. Nordén, P. Lincoln, B. Akerman and E. Tuite, Met. Ions Biol.
Syst., 1996, 33, 177.
J. Chem. Soc., Dalton Trans., 2002, 849–855
855