Inorganic Chemistry
Article
structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127−
4170.
Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Metal-
organic framework materials for light-harvesting and energy transfer.
Chem. Commun. 2015, 51, 3501−3510. (g) Lee, D. Y.; Lim, I.; Shin, C.
Y.; Patil, S. A.; Lee, W.; Shrestha, N. K.; Lee, J. K.; Han, S. H. Facile
interfacial charge transfer across hole doped cobalt-based MOFs/TiO2
nano-hybrids making MOFs light harvesting active layers in solar cells.
J. Mater. Chem. A 2015, 3, 22669−22676. (h) Han, S. B.; Warren, S.
C.; Yoon, S. M.; Malliakas, C. D.; Hou, X. L.; Wei, Y. H.; Kanatzidis,
M. G.; Grzybowski, B. A. Tunneling electrical connection to the
interior of metal-organic frameworks. J. Am. Chem. Soc. 2015, 137,
8169−8175. (i) Williams, D. E.; Shustova, N. B. Metal-organic
frameworks as a versatile tool to study and model energy transfer
processes. Chem. - Eur. J. 2015, 21, 15474−15479. (j) Zhang, Q. Q.;
Zhang, C. K.; Cao, L. Y.; Wang, Z.; An, B.; Lin, Z. K.; Huang, R. Y.;
(6) (a) Evans, O. R.; Lin, W. B. Crystal engineering of NLO materials
based on metal-organic coordination networks. Acc. Chem. Res. 2002,
35, 511−522. (b) Binnemans, K. Lanthanide-based luminescent hybrid
materials. Chem. Rev. 2009, 109, 4283−4374. (c) Rocha, J.; Carlos, L.
D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanides-
based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926−940.
(d) Wang, C.; Zhang, T.; Lin, W. B. Rational Synthesis of
noncentrosymmetric metal-organic frameworks for second-order
nonlinear optics. Chem. Rev. 2012, 112, 1084−1104. (e) Cui, Y. J.;
Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal
organic frameworks. Chem. Rev. 2012, 112, 1126−1162. (f) Zhang, W.;
Xiong, R. G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012,
112, 1163−1195.
Zhang, Z. M.; Wang, C.; Lin, W. B. Forster energy transport in metal-
̈
(7) (a) Heine, J.; Muller-Buschbaum, K. Engineering metal-based
organic frameworks is beyond step-by-step hopping. J. Am. Chem. Soc.
2016, 138, 5308−5315.
̈
luminescence in coordination polymers and metal-organic frameworks.
Chem. Soc. Rev. 2013, 42, 9232−9242. (b) Hu, Z. C.; Deibert, B. J.; Li,
J. Luminescent metal-organic frameworks for chemical sensing and
explosive detection. Chem. Soc. Rev. 2014, 43, 5815−5840. (c) Cui, Y.
J.; Chen, B. L.; Qian, G. D. Lanthanide metal-organic frameworks for
luminescent sensing and light-emitting applications. Coord. Chem. Rev.
2014, 273−274, 76−86. (d) Stavila, V.; Talin, A. A.; Allendorf, M. D.
MOF-based electronic and optoelectronic devices. Chem. Soc. Rev.
2014, 43, 5994−6010. (e) Dhakshinamoorthy, A.; Asiri, A. M.; Garcia,
H. Metal-organic framework (MOF) compounds: photocatalysts for
redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016,
55, 5414−5445. (f) Zhang, X. J.; Wang, W. J.; Hu, Z. J.; Wang, G. N.;
Uvdal, K. Coordination polymers for energy transfer: preparations,
properties, sensing applications, and perspectives. Coord. Chem. Rev.
2015, 284, 206−235. (g) Jones, C. L.; Tansell, A. J.; Easun, T. L. The
lighter side of MOFs: structurally photoresponsive metal-organic
frameworks. J. Mater. Chem. A 2016, 4, 6714−6723.
(10) (a) Zang, S. Q.; Su, Y.; Li, Y. Z.; Ni, Z. P.; Meng, Q. J.
Assemblies of a new flexible multicarboxylate ligand and d10 metal
centers toward the construction of homochiral helical coordination
polymers: structures, luminescence, and NLO-active properties. Inorg.
Chem. 2006, 45, 174−180. (b) Yang, J.; Li, G. D.; Cao, J. J.; Yue, Q.;
Li, G.-H.; Chen, J. S. Structural variation from 1D to 3D: effects of
ligands and solvents on the construction of lead(II)-organic
coordination polymers. Chem. - Eur. J. 2007, 13, 3248−3261.
(c) Huang, K. X.; Song, Y. L.; Pan, Z. R.; Li, Y. Z.; Zhuo, X.;
Zheng, H. G. Porous nonlinear-optical material based on a twin-nest-
shaped heterothiometallic cluster: {[NH4][W2O2S6Cu6I3(4,4′-bipy)4]
•5H2O}n. Inorg. Chem. 2007, 46, 6233−6235. (d) Wei, Z. H.; Ni, C.
Y.; Li, H. X.; Ren, Z.-G.; Sun, Z. R.; Lang, J. P. [PyH][{TpMo(μ3-
S)4Cu3}4(μ12-I)]: a unique tetracubane cluster derived from the S-S
bond cleavage and the iodide template effects and its enhanced NLO
performances. Chem. Commun. 2013, 49, 4836−4838. (e) Zhang, Z.
Y.; Gong, W. G.; Wang, F.; Chen, M. M.; Zhou, L. K.; Ren, Z. G.; Sun,
Z. R.; Lang, J. P. Assembly of new Mo/Cu/S clusters from [Et4N]-
[Tp*MoS(S4)] and Cu(I) salts: syntheses, structures and third-order
nonlinear optical properties. Dalton Trans. 2013, 42, 9495−9504.
(f) He, Y. P.; Tan, Y. X.; Zhang, J. Gas sorption, second-order
nonlinear optics, and luminescence properties of a multifunctional srs-
type metal-organic framework built by tris(4-carboxylphenylduryl)-
amine. Inorg. Chem. 2015, 54, 6653−6656. (g) Li, J. H.; Jia, D.; Meng,
S.; Zhang, J. F.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C.
Tetrazine chromophore-based metal-organic frameworks with unusual
configurations: synthetic, structural, theoretical, fluorescent, and
nonlinear optical studies. Chem. - Eur. J. 2015, 21, 7914−7926.
(h) Liu, M.; Quah, H. S.; Wen, S. C.; Yu, Z. S.; Vittal, J. J.; Ji, W.
Efficient third harmonic generation in a metal-organic framework.
Chem. Mater. 2016, 28, 3385−3390. (i) Zhang, W. H.; Ren, Z. G.;
Lang, J. P. Rational construction of functional molybdenum
(tungsten)-copper-sulfur coordination oligomers and polymers from
preformed cluster precursors. Chem. Soc. Rev. 2016, 45, 4995−5019.
(11) (a) Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.;
Naito, S.; Mori, W. Photocatalytic hydrogen production from water
using porous material [Ru2(p-BDC)2]n. Energy Environ. Sci. 2009, 2,
397−400. (b) Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin,
(8) (a) D’Andrade, B. W.; Forrest, S. R. White organic light-emitting
devices for solid-state lighting. Adv. Mater. 2004, 16, 1585−1595.
(b) Wang, P.; Ma, J. P.; Dong, Y. B.; Huang, R. Q. Tunable
luminescent lanthanide coordination polymers based on reversible
solid-state ion-exchange monitored by ion-dependent photoinduced
emission spectra. J. Am. Chem. Soc. 2007, 129, 10620−10621.
(c) Wang, M. S.; Guo, S. P.; Li, Y.; Cai, L. Z.; Zou, J. P.; Xu, G.;
Zhou, W. W.; Zheng, F. K.; Guo, G. C. A Direct white-light-emitting
metal-organic framework with tunable yellow-to-white photolumines-
cence by variation of excitation light. J. Am. Chem. Soc. 2009, 131,
13572−13573. (d) Sun, C. Y.; Wang, X. L.; Zhang, X.; Qin, C.; Li, P.;
Su, Z. M.; Zhu, D. X.; Shan, G. G.; Shao, K. Z.; Wu, H.; Li, J. Efficient
and tunable white-light emission of metal-organic frameworks by
iridium-complex encapsulation. Nat. Commun. 2013, 4, 2716−2717.
(e) Ma, M. L.; Qin, J. H.; Ji, C.; Xu, H.; Wang, R.; Li, B. J.; Zang, S. Q.;
Hou, H. W.; Batten, S. R. Anionic porous metal-organic framework
with novel 5-connected vbk topology for rapid adsorption of dyes and
tunable white light emission. J. Mater. Chem. C 2014, 2, 1085−1093.
(f) Chen, D. S.; Xing, H. Z.; Su, Z. M.; Wang, C. G. Electrical
conductivity and electroluminescence of a new anthracene-based
metal-organic framework with π-conjugated zigzag chains. Chem.
Commun. 2016, 52, 2019−2022.
(9) (a) Kent, C. A.; Mehl, B. P.; Ma, L. Q.; Papanikolas, J. M.; Meyer,
T. J.; Lin, W. B. Energy transfer dynamics in metal-organic
frameworks. J. Am. Chem. Soc. 2010, 132, 12767−12769. (b) Zhang,
X. D.; Ballem, M. A.; Hu, Z. J.; Bergman, P.; Uvdal, K. Nanoscale light-
harvesting metal-organic frameworks. Angew. Chem. 2011, 123, 5847−
5851. (c) Suresh, V. M.; George, S. J.; Maji, T. K. MOF nano-vesicles
and toroids: self-assembled porous soft-hybrids for light harvesting.
Adv. Funct. Mater. 2013, 23, 5585−5590. (d) Sun, L. B.; Xing, H. Z.;
Liang, Z. Q.; Yu, J. H.; Xu, R. R. A 4 + 4 strategy for synthesis of
zeolitic metal-organic frameworks: an indium-MOF with SOD
topology as a light-harvesting antenna. Chem. Commun. 2013, 49,
11155−11157. (e) Foster, M. E.; Azoulay, J. D.; Wong, B. M.;
Allendorf, M. D. Novel metal-organic framework linkers for light
harvesting applications. Chem. Sci. 2014, 5, 2081−2090. (f) So, M. C.;
́
G.; Sanchez, C.; Ferey, G. A new photoactive crystalline highly porous
titanium(IV) dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857−
10859. (c) deKrafft, K. E.; Wang, C.; Lin, W. B. Metal-organic
framework templated synthesis of Fe2O3/TiO2 nanocomposite for
hydrogen production. Adv. Mater. 2012, 24, 2014−2018. (d) He, J.;
Yan, Z. Y.; Wang, J. Q.; Xie, J.; Jiang, L.; Shi, Y. M.; Yuan, F. G.; Yu, F.;
Sun, Y. J. Significantly enhanced photocatalytic hydrogen evolution
under visible light over CdS embedded on metal-organic frameworks.
Chem. Commun. 2013, 49, 6761−6763. (e) Fateeva, A.; Chater, P. A.;
Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J.
R.; Rosseinsky, M. J. A water-stable porphyrin-based metal-organic
framework active for visible-light photocatalysis. Angew. Chem. 2012,
124, 7558−7562. (f) Wang, C.; DeKrafft, K. E.; Lin, W. B. Pt
nanoparticles@photoactive metal-organic frameworks: efficient hydro-
H
Inorg. Chem. XXXX, XXX, XXX−XXX