10.1002/chem.201905786
Chemistry - A European Journal
FULL PAPER
Galmés, A. Juan-Bals, A. Frontera, G. Resnati, Chem. Eur. J. 2020, 26,
DOI: 10.1002/chem.201905498
We thank the MICIU/AEI (project CTQ2017-85821-R, RED2018-
102331-T and CTQ2017-86775-P FEDER funds) and the
Fundación Séneca Región de Murcia (CARM) (project
20819/PI/18) for financial support. We thank the CTI (UIB) for
computational facilities.
[26] Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka, M. Shiro, J.
Am. Chem. Soc. 1998, 120, 3104–3110.
[27] S. Benz, J. López-Andarias, J. Mareda, N. Sakai, S. Matile, Angew.
Chem. Int. Ed. 2017, 56, 812–815.
[28] S. Benz, J. Mareda, C. Besnard, N. Sakai, S. Matile, Chem. Sci. 2017, 8,
8164–8169.
Keywords: Chalcogen bonding • Supramolecular Chemistry •
Anion-receptors • MEP analysis • DFT study
[29] P. Wonner, L. Vogel, M. Deser, L. Gomes, F. Kniep, B. Mallick, D. B.
Werz, S. M. Huber, Angew. Chem. Int. Ed. 2017, 56, 12009–12012.
[30] (a) L. M. Lee, M. Tsemperouli, A. I. Poblador-Bahamonde, S. Benz, N.
Sakai, K. Sugihara, S. Matile, J. Am. Chem. Soc. 2019, 141, 2, 810-814;
(b) G. Sanchez-Sanz, C. Trujillo, J. Phys. Chem. A, 2018, 122, 1369-
1377.
References
[31] (a) P. C. Ho, P. Szydlowski, J. Sinclair, P. J. W. Elder, J. Kebel, C. Gendy,
L. M. Lee, H. Jenkins, J. F. Britten, D. R. Morim, I. Vargas-Baca, Nat.
Commun. 2016, 7, 11299.; (b) L. Chen, J. Xiang, Y. Zhao, Q. Yan, J. Am.
Chem. Soc. 2018, 140, 7079 – 7082.
[1]
[2]
H. J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924–3977.
J. M. Lehn in Supramolecular chemistry concepts and perspectives,
Wiley-VCH, Weinheim, 1995.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
J. W. Steed, J. L. Atwood in Supramolecular chemistry, Wiley, Chichester,
2000.
[32] K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L.
Pombeiro, Dalton Trans. 2017, 46, 10121–10138.
G. Gilli, P. Gilli, The Nature of the Hydrogen Bond, Oxford University
Press, Oxford, 2009.
[33] (a) J. Y. C. Lim J. Y. Liew, P. D. Beer, Chem. Eur. J. 2018, 24, 14560–
14566; (b) G. E. Garrett, E. I. Carrera, D. S. Seferos, S. Taylor, Chem.
Commun. 2016, 52, 9881-9884
G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural
Chemistry and Biology, Oxford, New York, 1999.
S. Scheiner, Hydrogen Bonding. A Theoretical Perspective, Oxford
University Press, New York, 1997.
[34] N. A. Semenov, A. V. Lonchakov, N. A. Kushkarevsky, E. A. Suturina, V.
V. Korolev, E. Lork, V. G. Vasiliev, S. N. Konchenko, J. Beckmann, N. P.
Gritsan, A. V. Zibarev, Organometallics, 2014, 33, 4302–4314.
[35] G. E. Garrett, G. L. Gibson, R. N. Straus, D. S. Seferos, M. S. Taylor, J.
Am. Chem. Soc. 2015, 137, 4126–4133
S. J. Grabowski in Hydrogen Bonding—New Insights, Springer,
Amsterdam, 2006.
G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G.
Terraneo, Chem. Rev. 2016, 116, 2478–2601
P. Scilabra, G. Terraneo, G. Resnati, Acc. Chem. Res. 2019, 52, 1313-
1324
[36] V. Kumar, C. Leroy, D. L. Bryce, CrystEngComm, 2018, 20, 6406-6411
[37] (a) A. F. Cozzolino, P. J. W. Elder, I. Vargas-Baca, Coord. Chem. Rev.
2011, 255, 1426 –1438; (b) A. Kremer, A. Fermi, N. Biot, J. Wouters, D.
Bonifazi, Chem. Eur. J., 2016, 22, 5665 –5675.
[10] S. Scheiner, Acc. Chem. Res. 2013, 46, 280-288
[11] (a) A. Bauzá, T. J. Mooibroek, A. Frontera, Angew. Chem. Int. Ed. 2013,
52, 1231 7–12321; (b) A. Bauzá, S. K. Seth, A. Frontera, Coord. Chem.
Rev. 2019, 384, 107-125.
[38] A. Mishra, C.-Q. Ma, P. Bäuerle, Chem. Rev. 2009, 109, 1141–1276.
[39] M. E. Brezgunova , J. Lieffrig , E. Aubert , S. Dahaoui , P. Fertey , S.
Lebègue , J. Angyan , M. Fourmigué, E. Espinosa, Cryst. Growth Des.
2013, 13, 3283–3289.
[12] (a) A. Bauzá, A. Frontera, Angew. Chem. Int. Ed. 2015, 54, 7340–7343;
(b) A. Bauzá, A. Frontera, Coord. Chem. Rev. 2020, 404, 213112
[13] S. Grabowski, J. Comput. Chem, 2018, 39, 472-480
[14] P. Politzer, J. S. Murray, Crystals 2017, 7, 212– 226
[15] J. S. Murray, P. Lane, T. Clark, K. E. Riley, P. Politzer, J. Mol. Model.
2012, 18, 541–548.
[40] P. Wonner, L. Vogel, M. Düser, L. Gomes, F. Kniep, B. Mallick, D. B.
Werz, S. M. Huber, Angew. Chem. Int. Ed., 2017, 56, 12009–12012.
[41] (a) L. Brammer, Faraday Discuss., 2017, 203, 485–507; (b) A. Lari, R.
Gleiter, F. Rominger, Eur. J. Org. Chem., 2009, 2267–2274; (c) S.
Scheiner, Faraday Disc, 2017, 203, 213–226.
[42] A. Borissov, I. Marques, J. Y. C. Lim, V. Félix, M. D. Smith, P. D. Beer,
J. Am. Chem. Soc. 2019, 141, 9, 4119-4129.
[16] G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, G. Terraneo,. Cryst.
Growth Des. 2014, 14, 2697– 2702
[43] J-H Kim, J. B. Park, S. A. Shin, M. H. Hyun, D-H Hwang. Polymer. 2014,
55, 3605-3613.
[17] (a) A. Bauzá, T. J. Mooibroek, A. Frontera, ChemPhysChem 2015, 16,
2496–2517; (b) A. Bauza, A. Frontera, ChemPhysChem 2020, 21, 26–
31.
[44] P. Data, M. Lapkowski, R. Motyka, J. Suwinski.Electrochim. Acta. 2012,
83, 271-282.
[18] D. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139,
15160– 15167.
[45] P. Kuzmic, Anal. Biochem., 1996, 237, 260–273.
[19] S. Scheiner, Chem. Eur. J. 2016, 22, 18850– 18858.
[20]
J. Y. C. Lim, P. D. Beer, Chem 2018, 4, 731– 783.
[21] C. B. Aakeroy, D. L. Bryce, G. R. Desiraju, A. Frontera, A. C. Legon, F.
Nicotra, K. Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo, G.
Resnati, Pure. Appl. Chem. 2019, 91, 1889–1892
[22] D. J. Pascoe, K. B. Ling, S. L. Cockroft, J. Am. Chem. Soc. 2017, 139,
15160−15167.
[23] C. C. Robertson, R. N. Perutz, L. Brammer, C. A. Hunter, Chem. Sci.
2014, 5, 4179−4183.
[24] J. Fanfrlk, A. Prda, Z. Padelkov, A. Pecina, J. Machcek, M. Lepsk, J.
Holub, A. Ruzicka, D. Hnyk, P. Hobza, Angew. Chem. Int. Ed. 2014, 53,
10139–10142.
[25] (a) Y. Zhang, W. Wang, Crystals 2018, 8, 163; (b) A. Bauza, A. Frontera,
Molecules 2018, 23, 699; (c) A. Franconetti, D. Quiñonero, A. Frontera,
G. Resnati, Phys. Chem. Chem. Phys. 2019, 21, 11313-11319; (d) B.
This article is protected by copyright. All rights reserved.