862
14
Finally, H-20 was oxidised to a hydroxyl group by O2/CuCl2 but with consequent loss of chirality
so that the product was racemic camptothecin, identical with an authentic sample of (+)-1 by TLC, MS,
1
IR, UV and H NMR spectra.15 However, routes to the (+)-isomer using enzymatic oxidation of 14 or
the intrinsic chirality of 11 are in progress. We have thus achieved the target of a biomimetic synthesis of
camptothecin, and also prepared the likely biosynthetic intermediates 12, 13 and 14. These and others,
such as the C-3 epimers of 8 and 9 from strictosidine lactam 4, can now be prepared with labels for in
vivo experiments.
Acknowledgements
We thank Drs. L. Akhter, D. Curless, S. B. Fraser, A. G. Lashford, and P. Richards for their pioneering
work in this area, and the British Council, the CVCP and the Chemistry Department, Manchester
University for financial support (JL).
References
1. Wall, M. E.; Wani, M. C. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: San Diego, 1998; Vol. 50, Chapter 13, pp.
509–520 and references cited therein.
2. Cai, J.-C.; Hutchinson, C. R. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1983; Vol. XXI, Chapter 4, pp.
101–137 and references cited therein.
3. Battersby, A. R.; Burnett, A. R.; Parsons, P. G. J. Chem. Soc. (C) 1969, 1193–1200.
4. Brown, R. T.; Leonard, J.; Sleigh, S. K. Phytochemistry 1978, 17, 899–900.
5. Fraser, S. B. Ph.D. Thesis, University of Manchester, 1975.
6. Lashford, A. G. Ph.D. Thesis, University of Manchester, 1978.
7. Hutchinson, C. R.; O’Loughlin, G. J.; Fraser, S. B.; Brown, R. T. Chem. Commun. 1974, 928.
8. Akhter, L. Ph.D. Thesis, University of Manchester, 1979.
9. Curless, D. Ph.D. Thesis, University of Manchester, 1985.
10. Carte, B. A.; DeBrosse, C.; Eggleston, D.; Hecht, S. M.; Hemling, M.; Mentzner, M.; Poeland, P.; Troupe, N.; Westley, J.
W. Tetrahedron 1990, 46, 2747–2760.
1
11. Compound 11: H NMR (200 MHz, CDCl3): δ 7.90 (bs, NH), 7.00–6.45 (m, 4 Ar-H), 5.37 (bs, H2-5), 5.20 (t, J=9 Hz,
H-30), 5.08 (dd, J=9, 8 Hz, H-40), 5.05–4.88 (m, H-20, H-3, H-10), 4.42 (d, J=9 Hz, H-21), 4.30 (m, J=6 Hz, H2-60), 4.12
(dd, J=12, 5.5 Hz, H-17β), 3.90 (dd, J=12, 9 Hz, H-17α), 3.75 (m, J=8, 6 Hz, H-50), 3.40 (d, J=13 Hz, H-7b), 3.28 (d, J=13
Hz, H-7a), 2.78 (m, J=9, 5.5, 5 Hz, H-16β), 2.57 (m, J=5, 6, 6, 12 Hz, H-15), 2.34 (m, J=13, 6, 2.5 Hz, H14β), 2.10–1.95 (4
s, 4 OAc), 2.00–1.80 (m, H-14α, H-19b), 1.65–1.38 (m, H-20β, H-19a), 0.98 (t, J=8 Hz, H3-18).
12. Adamovics, J. A.; Cina, J. A.; Hutchinson, C. R. Phytochemistry 1979, 18, 1085–1086.
13. Compound 14: λmax 254, 288, 360 nm; 1H NMR (500 MHz, CDCl3): δ 8.39 (s, H-7), 8.20 (d, J=8 Hz, H-12), 7.93 (d, J=8
Hz, H-9), 7.82 (t, J=8 Hz, H-10/11), 7.66 (t, J=8 Hz, H-11/10), 7.44 (s, H-14), 5.56 (d, J=17 Hz, H-17b), 5.38 (d, J=17 Hz,
H-17a), 5.29 (s, H2-5), 3.62 (t, J=6 Hz, H-20), 2.08 (m, H2-19), 1.07 (t, J=8 Hz, H3-18).
14. Winterfeldt, E.; Korth, T.; Pike, D.; Boch, M. Angew. Chem., Int. Ed. Engl. 1972, 11, 289–290.
15. Compound 1: λmax 252, 288, 367 nm; 1H NMR (500 MHz, CDCl3): δ 8.39 (s, H-7), 8.22 (d, J=8 Hz, H-12), 7.92 (d, J=8
Hz, H-9), 7.82 (t, J=8 Hz, H-10/11), 7.70 (s, H-14), 7.65 (t, J=8 Hz, H-11/10), 5.75 (d, J=17 Hz, H-17b), 5.33 (s, H2-5), 5.31
(d, J=17 Hz, H-17a), 1.87 (m, H2-19), 1.07 (t, J=8 Hz, H3-18).