LETTER
Selenoxides as Catalysts
1103
(5) (a) Grieco, P. A.; Yokoyama, Y.; Gilman, S.; Nishizawa, M.
J. Org. Chem. 1977, 42, 2034. (b) Sharpless, K. B.; Hori, T.
J. Org. Chem. 1978, 43, 1689. (c) Ten Brink, G. J.;
Fernandes, B. C. M.; Van Vliet, M. C. A.; Arends, I. W. C.
E.; Sheldon, R. A. J. Chem. Soc., Perkin Trans. 1 2001, 224.
(6) Syper, L.; Mlochowski, J. Tetrahedron 1987, 43, 207.
(7) For a general review, see: Lane, B. S.; Burgess, K. Chem.
Rev. 2003, 103, 2457.
reactions between 1-methylcyclohexene and 3,4,5-tri-
methoxybenzaldehyde (12) or cyclohexanone using
selenoxide 2 or 4 as a catalyst.22 For comparison purposes,
we also examined the selectivity for epoxidation relative
to Baeyer–Villiger oxidation using m-chloroperbenzoic
acid (MCPBA) as oxidant with the same 1:1:1 relative
stoichiometry of oxidant and substrates.22
(8) (a) Ten Brink, G. J.; Vis, J.-M.; Arends, I. W. C. E.; Sheldon,
R. A. J. Org Chem. 2001, 66, 2429. (b) Ten Brink, G. J.;
Vis, J.-M.; Arends, I. W. C. E.; Sheldon, R. A. Tetrahedron
2002, 3977.
(9) For general reviews, see: (a) Renz, M.; Meunier, B. Eur. J.
Org. Chem. 1999, 737. (b) Krow, G. R. Org. React. 1993,
43, 251.
With m-CPBA, epoxidation of 1-methylcyclohexene was
favored by 16:1 relative to Baeyer–Villiger oxidation of
aldehyde 12 and by 20:1 relative to Baeyer–Villiger oxi-
dation of cyclohexanone. With H2O2 and selenoxide 4 as
a catalyst, epoxidation of 1-methyl-cyclohexene was fa-
vored by 4.0:1 relative to Baeyer–Villiger oxidation of al-
dehyde 12 and by 4.6:1 relative to oxidation of
cyclohexanone. With H2O2 as oxidant and benzyl 4-meth-
oxyphenyl selenoxide (2) as catalyst, epoxidation of 1-
methylcyclohexene was favored by 1.6:1 relative to
Baeyer–Villiger oxidation of aldehyde 12 and by 1.3:1
relative to oxidation of cyclohexanone.
(10) Goodman, M. A.; Detty, M. R. Organometallics 2004, 23,
3016.
(11) (a) Walter, R.; Roy, J. J. Org. Chem. 1970, 36, 2561.
(b) Jones, D. N.; Mundy, D.; Whitehouse, R. D. J. Chem.
Soc., Chem. Commun. 1970, 86. (c) Sharpless, K. B.;
Young, M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 1979.
(d) Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am. Chem. Soc.
1973, 95, 5813.
Aryl benzyl selenoxides are efficient catalysts for epoxi-
dation of alkenes and for Baeyer–Villiger oxidation of
various carbonyl-containing compounds using the envi-
ronmentally benign oxidant H2O2. Of the selenoxides ex-
amined here, selenoxide 4 is kinetically the most active
catalyst. Rates of Baeyer–Villiger oxidation and epoxida-
tion with the selenoxide catalysts are more similar than
with MCPBA as an oxidant where epoxidation is much
faster. We shall build upon these initial studies to develop
selective selenoxide catalysts for epoxidation of alkenes
or for Baeyer–Villiger oxidation of aldehydes and ketones
using H2O2 as an oxidant.
(12) Krief, A.; Lonez, F. Tetrahedron Lett. 2002, 43, 6255.
(13) Detty, M. R. J. Org. Chem. 1980, 45, 274.
(14) Hydrogen peroxide (8.8 M, 0.225 mL, 2.0 mmol) was added
to 1.0 mmol of cis-cyclooctene and 0.05 mmol of selenoxide
in 2 mL of CH2Cl2. The progress of the reaction at 296 1 K
was monitored by determining the cis-cylooctene:6 ratio
using 1H NMR spectroscopy from aliquots withdrawn from
the reaction mixtures.
(15) Selenoxide 4 (0.05 mmol, 2.5 mol%), alkene (2 mmol) or
carbonyl compound (2 mmol), and H2O2 (8.8 M, 0.45 mL,
4.0 mmol) were stirred in CH2Cl2 (2 mL) at 296 K. The
progress of reaction was followed by 1H NMR spectroscopy
of aliquots withdrawn at various time points. Upon
completion, reaction mixtures were poured into 10 mL of
H2O and products were extracted with CH2Cl2. Products
were purified via chromatography of SiO2 eluted with
CH2Cl2.
Acknowledgment
(16) Compound 6: 1H NMR (400 MHz, CDCl3): d = 2.91 (d, 2 H,
J = 8 Hz), 2.15 (d, 2 H, J = 11.6 Hz), 1.27–1.60 (m, 10 H).
13C NMR (125 MHz, CDCl3): d = 55.35, 26.58, 26.37, 25.59.
Compound 7: 1H NMR (400 MHz, CDCl3): d = 7.24–7.34
(m, 5 H), 3.57 (s, 1 H), 3.04 (q, 1 H, J = 5.0 Hz), 1.44 (d, 3
H, J = 5.0 Hz). 13C NMR (125 MHz, CDCl3): d = 137.60,
128.30, 127.90, 125.40, 59.42, 58.93, 17.80.
We thank the Office of Naval Research (Grant No. N00014021-
0836) for partial support of this work.
References and Notes
(1) (a) Allan, G. G.; Neogi, A. N. J. Catal. 1970, 16, 197.
(b) Venturello, C.; Alneri, E.; Ricci, M. J. Org. Chem. 1983,
48, 3831. (c) Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.;
Yoshida, T.; Ogawa, M. J. Org. Chem. 1988, 53, 3587.
(d) Kaczmarczyk, E.; Janus, E.; Milchert, E. J. Mol. Catal.
A: Chem. 2005, 235, 52.
(2) (a) Herrmann, W. A.; Fischer, R. W.; Scherer, W.; Rauch,
M. U. Angew. Chem., Int. Ed. Engl. 1993, 32, 1157.
(b) Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B.
J. Am. Chem. Soc. 1997, 119, 6189. (c) Li, M.; Espenson, J.
H. J. Mol. Catal. A: Chem. 2004, 208, 123.
(3) (a) Renaud, J. P.; Battioni, P.; Bartoli, J. F.; Mansuy, D. J.
Chem. Soc., Chem. Commun. 1985, 888. (b) Neumann, R.;
Gara, M. J. Am. Chem. Soc. 1995, 117, 5066. (c) Rebelo, S.
L. H.; Pereira, M. M.; Simoes, M. M. Q.; Neves, M. G. P. M.
S.; Cavaleiro, J. A. S. J. Catal. 2005, 234, 76.
(4) (a) Astin, S.; Newman, A. C. C.; Riley, H. L. J. Chem. Soc.
1933, 391. (b) Schaefer, J. P.; Horvath, B.; Klein, H. P. J.
Org. Chem. 1968, 33, 2647.
Compound 8: 1H NMR (500 MHz, CDCl3): d = 2.75 (t, 1 H,
J = 7.5 Hz), 1.24–1.52 (m, 12 H), 0.91 (t, 3 H, J = 6.5 Hz).
13C NMR (125 MHz, CDCl3): d = 64.58, 58.48, 28.42, 28.25,
24.61, 22.34, 18.42, 13.78.
Compound 9: 1H NMR (500 MHz, CDCl3): d = 1.84–1.91
(m, 2 H), 1.63–1.69 (m, 2 H), 1.38–1.44 (m, 2 H), 1.30 (s, 3
H), 1.16–1.26 (m, 2 H). 13C NMR (125 MHz, CDCl3): d =
59.15, 32.57, 29.40, 24.26, 23.52, 19.56, 19.18.
Compound 10: 1H NMR (500 MHz, CDCl3): d = 2.66 (t, 2
H, J = 5.0 Hz), 1.35–1.54 (m, 12 H), 0.93 (t, 6 H, J = 7.0
Hz). 13C NMR (125 MHz, CDCl3): d = 58.53, 31.78, 28.12,
22.46, 13.92.
Compound 13: 1H NMR (400 MHz, CDCl3): d = 8.17 (s, 1
H), 6.28 (s, 2 H), 3.71 (s, 9 H). 13C NMR (125 MHz, CDCl3):
d = 159.20, 153.20, 145.60, 135.70, 98.32, 60.36, 55.72.
Compound 14: 1H NMR (400 MHz, CDCl3): d = 4.25 (t, 2
H, J = 4.6 Hz), 2.66 (t, 2 H, J = 5.2 Hz), 1.59–1.66 (m, 4 H),
1.40–1.50 (m, 2 H). 13C NMR (75 MHz, CDCl3): d = 175.90,
69.22, 34.66, 29.18, 27.42, 25.40.
Synlett 2006, No. 7, 1100–1104 © Thieme Stuttgart · New York