Organic Letters
Letter
Stoltz, B. M. Catalytic Enantioselective Construction of Quaternary
Stereocenters: Assembly of Key Building Blocks for the Synthesis of
Biologically Active Molecules. Acc. Chem. Res. 2015, 48, 740−751.
carboboration methods continues to be investigated in these
laboratories.
́
(h) Alam, R.; Vollgraff, T.; Eriksson, L.; Szabo, K. J. Synthesis of
ASSOCIATED CONTENT
■
Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylbo-
ration. J. Am. Chem. Soc. 2015, 137, 11262−11265.
S
* Supporting Information
(3) For a recent review of the area, see: Zeng, X.-P.; Cao, Z. Y.;
Wang, Y.-H.; Zhou, F.; Zhou, J. Catalytic Enantioselective
Desymmetrization Reactions to All-Carbon Quaternary Stereocenters.
Chem. Rev. 2016, 116, 7330−7396.
The Supporting Information is available free of charge on the
Experimental procedures and spectral and analytical data
(4) For representative examples of tandem conjugate addition/aldol
desymmetrization of 1,3-diketones, see: (a) Bocknack, B. M.; Wang,
L.-C.; Krische, M. J. Desymmetrization of Enone-Diones via
Rhodium-Catalyzed Diastereo- and Enantioselective Tandem Con-
jugate Addition-Aldol Cyclization. Proc. Natl. Acad. Sci. U. S. A. 2004,
101, 5421−5424. (b) Burns, A. R.; Gonzalez, J. S.; Lam, H. W.
Enantioselective Copper(I)-Catalyzed Borylative Aldol Cyclizations
of Enone Diones. Angew. Chem., Int. Ed. 2012, 51, 10827−10831.
(5) Hall, D. G. In Boronic Acids: Preparation and Applications in
Organic Synthesis and Medicine; Wiley-VCH: Weinheim, 2011.
(6) For reviews of Suzuki−Miyaura cross-couplings, see: (a) Chem-
ler, S. R.; Trauner, D.; Danishefsky, S. J. The B-Alkyl Suzuki-Miyaura
Cross-Coupling Reaction: Development, Mechanistic Study, and
Applications in Natural Product Synthesis. Angew. Chem., Int. Ed.
2001, 40, 4544−4568. (b) Lennox, A. J. J.; Lloyd-Jones, G. C.
Selection of Boron Reagents for Suzuki-Miyaura Coupling. Chem. Soc.
Rev. 2014, 43, 412−443.
(7) For stereospecific transformations, see: (a) Scott, H. K.;
Aggarwal, V. K. Highly Enantioselective Synthesis of Tertiary Boronic
Esters and their Stereospecific Conversion to other Functional
Groups and Quaternary Stereocenters. Chem. - Eur. J. 2011, 17,
13124−13132. (b) Leonori, D.; Aggarwal, V. K. Stereospecific
Couplings of Secondary and Tertiary Boronic Esters. Angew. Chem.,
Int. Ed. 2015, 54, 1082−1096. (c) Sandford, C.; Aggarwal, V. K.
Stereospecific Functionalizations of Secondary and Tertiary Boronic
Esters. Chem. Commun. 2017, 53, 5481−5494.
(8) Green, J. C.; Joannou, M. V.; Murray, S. A.; Zanghi, J. M.; Meek,
S. J. Enantio- and Diastereoselective Synthesis of Hydroxy Bis-
(boronates) via Cu-Catalyzed Tandem Borylation/1,2-Addition. ACS
Catal. 2017, 7, 4441−4445.
(9) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. Highly
Selective Methods for Synthesis of Internal (α-) Vinylboronates
through Efficient NHC-Cu-Catalyzed Hydroboronation of Terminal
Alkynes. Utility in Chemical Synthesis and Mechanistic Basis for
Selectivity. J. Am. Chem. Soc. 2011, 133, 7859−7871.
(10) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Copper-Catalyzed
Borylative Transformations of Non-Polar Carbon−Carbon Unsatu-
rated Compounds Employing Borylcopper as an Active Catalyst
Species. Tetrahedron 2015, 71, 2183−2197.
(11) (a) Lee, Y.; Jang, H.; Hoveyda, A. H. Vicinal Diboronates in
High Enantiomeric Purity through Tandem Site-Selective NHC-Cu-
Catalyzed Boron-Copper Additions to Terminal Alkynes. J. Am.
Chem. Soc. 2009, 131, 18234−18235. (b) Jung, H.-Y.; Yun, J. Copper-
Catalyzed Double Borylation of Silylacetylenes: Highly Regio- and
Stereoselective Synthesis of Syn-Vicinal Diboronates. Org. Lett. 2012,
14, 2606−2609.
Accession Codes
mentary crystallographic data for this paper. These data can be
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the United States National
Institutes of Health, Institute of General Medical Sciences
(R01GM116987) and the University of North Carolina at
Chapel Hill. We thank Quentin Bruch, Tia Cervarich, and Dr.
Chun-Hsing Chen of UNC for X-ray structure elucidation of
3b, 3f, and 5b. AllyChem is acknowledged for donations of
B2(pin)2.
REFERENCES
■
(1) For selected reviews, see: (a) Tietze, L. F. Domino Reactions in
Organic Synthesis. Chem. Rev. 1996, 96, 115−136. (b) Pellissier, H.
Stereocontrolled Domino Reactions. Chem. Rev. 2013, 113, 442−524.
(c) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Catalytic C−C Bond-
Forming Multi-Component Cascade or Domino Reactions: Pushing
the Boundaries of Complexity in Asymmetric Organocatalysis. Chem.
Rev. 2014, 114, 2390−2431. (d) Eppe, G.; Didier, D.; Marek, I.
Stereocontrolled Formation of Several Carbon−Carbon Bonds in
Acyclic Systems. Chem. Rev. 2015, 115, 9175−9206.
(2) For selected reviews, see: (a) Corey, E. J.; Guzman-Perez, A. The
Catalytic Enantioselective Construction of Molecules with Quaternary
Carbon Stereocenters. Angew. Chem., Int. Ed. 1998, 37, 388−401.
(b) Peterson, E. A.; Overman, L. E. Contiguous Stereogenic
Quaternary Carbons: A Daunting Challenge in Natural Products
Synthesis. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 11943−11948.
(c) Christoffers, J.; Baro, A. Stereoselective Construction of
Quaternary Stereocenters. Adv. Synth. Catal. 2005, 347, 1473−1482.
(d) Marek, I.; Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik,
H.; Das, J. P. All-Carbon Quaternary Stereogenic Centers in Acyclic
Systems through the Creation of Several C−C Bonds per Chemical
Step. J. Am. Chem. Soc. 2014, 136, 2682−2694. (e) Quasdorf, K. W.;
Overman, L. E. Catalytic Enantioselective Synthesis of Quaternary
Carbon Stereocenters. Nature 2014, 516, 181−191. (f) Long, R.;
Huang, J.; Gong, J.; Yang, Z. Direct Construction of Vicinal All-
Carbon Quaternary Stereocenters in Natural Product Synthesis. Nat.
Prod. Rep. 2015, 32, 1584−1601. (g) Liu, Y.; Han, S.-J.; Liu, W.-B.;
(12) For a recent example of nonenantioselective carboboration of
vinyl-B(pin), see: (a) Yoshida, H.; Kageyuki, I.; Takaki, K. Copper-
Catalyzed Three-Component Carboboration of Alkynes and Alkenes.
Org. Lett. 2013, 15, 952−955. (b) Kageyuki, I.; Osaka, I.; Takaki, K.;
Yoshida, H. Copper-Catalyzed B(Dan)-Installing Carboboration of
Alkenes. Org. Lett. 2017, 19, 830−833.
(13) For recent examples of catalytic carboboration of olefins, see:
(a) Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M.
Synthesis of Optically Active Boron-Silicon Bifunctional Cyclo-
propane Derivatives through Enantioselective Copper(I)-Catalyzed
Reaction of Allylic Carbonates with a Diboron Derivative. Angew.
Chem., Int. Ed. 2008, 47, 7424−7427. (b) Zhong, C.; Kunii, S.;
Kosaka, Y.; Sawamura, M.; Ito, H. Enantioselective Synthesis of Trans
E
Org. Lett. XXXX, XXX, XXX−XXX