Organometallics
Article
Nickel-Catalyzed Site-Selective Alkylation of Unactivated C(sp3)−H
Bonds. J. Am. Chem. Soc. 2014, 136 (5), 1789−1792. (g) Landge, V.
G.; Shewale, C. H.; Jaiswal, G.; Sahoo, M. K.; Midya, S. P.; Balaraman,
E. Nickel-catalyzed direct alkynylation of C(sp2)−H bonds of amides:
an “inverse Sonogashira strategy” to ortho-alkynylbenzoic acids. Catal.
Sci. Technol. 2016, 6 (6), 1946−1951. (h) Yi, J.; Yang, L.; Xia, C.; Li,
F. Nickel-Catalyzed Alkynylation of a C(sp2)−H Bond Directed by
an 8-Aminoquinoline Moiety. J. Org. Chem. 2015, 80 (12), 6213−
6221. (i) Liu, Y.-J.; Liu, Y.-H.; Yan, S.-Y.; Shi, B.-F. A sustainable and
simple catalytic system for direct alkynylation of C(sp2)−H bonds
with low nickel loadings. Chem. Commun. 2015, 51 (29), 6388−6391.
(j) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Zhang, Z.-Z.; Shi, B.-F.
Nickel-catalyzed direct thiolation of unactivated C(sp3)−H bonds
with disulfides. Chem. Commun. 2015, 51 (34), 7341−7344. (k) Liu,
Y.-H.; Liu, Y.-J.; Yan, S.-Y.; Shi, B.-F. Ni(ii)-catalyzed dehydrative
alkynylation of unactivated (hetero)aryl C−H bonds using oxygen: a
user-friendly approach. Chem. Commun. 2015, 51 (58), 11650−
11653.
Chauvin, R.; Zargarian, D. Nickel(II) complexes of the new pincer-
type unsymmetrical ligands PIMCOP, PIMIOCOP, and NHCCOP:
versatile binding motifs. Chem. Commun. 2012, 48 (84), 10446−
́
10448. (j) Hao, J.; Mougang-Soume, B.; Vabre, B.; Zargarian, D. On
the Stability of a POCsp3OP-Type Pincer Ligand in Nickel(II)
Complexes. Angew. Chem. 2014, 126 (12), 3282−3286. (k) Vabre, B.;
Petiot, P.; Declercq, R.; Zargarian, D. Fluoro and Trifluoromethyl
Derivatives of POCOP-Type Pincer Complexes of Nickel: Prepara-
tion and Reactivities in SN2 Fluorination and Direct Benzylation of
Unactivated Arenes. Organometallics 2014, 33 (19), 5173−5184.
̀
(7) (a) Lefevre, X.; Durieux, G.; Lesturgez, S.; Zargarian, D.
Addition of amines and phenols to acrylonitrile derivatives catalyzed
by the POCOP-type pincer complex [{κP,κC,κP-2,6-(i-Pr2PO)-
2C6H3}Ni(NCMe)][OSO2CF3]. J. Mol. Catal. A: Chem. 2011,
́
335 (1), 1−7. (b) Hao, J.; Vabre, B.; Mougang-Soume, B.; Zargarian,
D. Small Molecule Activation by POCOP-Nickel Complexes. Chem. -
Eur. J. 2014, 20 (39), 12544−12552. (c) Salah, A.; Corpet, M.; ul-
Hassan Khan, N.; Zargarian, D.; Spasyuk, D. M. Synthesis of
unsymmetrical 5,6-POCOP′-type pincer complexes of nickel(ii):
impact of nickelacycle size on structures and spectroscopic properties.
New J. Chem. 2015, 39 (8), 6649−6658.
(3) Zheng, X.-X.; Du, C.; Zhao, X.-M.; Zhu, X.; Suo, J.-F.; Hao, X.-
Q.; Niu, J.-L.; Song, M.-P. Ni(II)-Catalyzed C(sp2)−H Alkynylation/
Annulation with Terminal Alkynes under an Oxygen Atmosphere: A
One-Pot Approach to 3-Methyleneisoindolin-1-one. J. Org. Chem.
2016, 81 (10), 4002−4011.
(8) Vabre, B.; Deschamps, F.; Zargarian, D. Ortho Derivatization of
Phenols through C−H Nickelation: Synthesis, Characterization, and
Reactivities of Ortho-Nickelated Phosphinite Complexes. Organo-
metallics 2014, 33 (22), 6623−6632.
(9) Mangin, L. P.; Zargarian, D. C−H nickelation of phenol-derived
phosphinites: regioselectivity and structures of cyclonickelated
complexes. Dalton Transactions 2017, 46 (46), 16159−16170.
(10) Vabre, B.; Lambert, M. L.; Petit, A.; Ess, D. H.; Zargarian, D.
Nickelation of PCP- and POCOP-Type Pincer Ligands: Kinetics and
Mechanism. Organometallics 2012, 31 (17), 6041−6053.
(11) (a) Baho, N.; Zargarian, D. Diphenyl(dipyrazolyl)methane
Complexes of Ni: Synthesis, Structural Characterization, and
Chromotropism of NiBr2 Derivatives. Inorg. Chem. 2007, 46 (18),
7621−7632. (b) Lapointe, S.; Vabre, B.; Zargarian, D. POCOP-Type
Pincer Complexes of Nickel: Synthesis, Characterization, and Ligand
Exchange Reactivities of New Cationic Acetonitrile Adducts.
(4) See the following report for a rare mechanistic study on this
subject: Beattie, D. D.; Grunwald, A. C.; Perse, T.; Schafer, L. L.;
Love, J. A. Understanding Ni(II)-Mediated C(sp3)−H Activation:
Tertiary Ureas as Model Substrates. J. Am. Chem. Soc. 2018, 140 (39),
12602−12610.
(5) (a) Fontaine, F.-G.; Kadkhodazadeh, T.; Zargarian, D. Nickel
indenyl complexes as precatalysts for dehydropolymerization of
phenylsilane. Chem. Commun. 1998, No. 12, 1253−1254.
́
́
(b) Groux, L. F.; Belanger-Gariepy, F.; Zargarian, D.; Vollmerhaus,
R. Preparation and Characterization of Nickel Complexes with η-
Indenyl Ligands Bearing a Pendant Aminoalkyl Chain. Organo-
́
metallics 2000, 19 (8), 1507−1513. (c) Groux, L. F.; Belanger-
́
Gariepy, F.; Zargarian, D. Phosphino-indenyl complexes of nickel(II).
Can. J. Chem. 2005, 83 (6−7), 634−639. (d) Chen, Y.; Sui-Seng, C.;
Zargarian, D. Tetraphenylborate as a Novel Bridging Ligand in a
Zwitterionic Nickel(I) Dimer. Angew. Chem., Int. Ed. 2005, 44 (47),
7721−7725. (e) Baho, N.; Zargarian, D. Syntheses, Structures,
Spectroscopy, and Chromotropism of New Complexes Arising from
the Reaction of Nickel(II) Nitrate with Diphenyl(dipyrazolyl)-
methane. Inorg. Chem. 2007, 46 (1), 299−308.
̀
Organometallics 2015, 34 (14), 3520−3531. (c) Lefevre, X.;
Spasyuk, D. M.; Zargarian, D. J. Organomet. Chem. 2011, 696, 864−
870. (d) Wang, R.; Groux, L. F.; Zargarian, D. Nickel-Triflate
Complexes as Precursors to Reactive Cations: Preparation and
Reactivities of (1-R-indenyl)Ni(PPh3)(OSO2CF3). Organometallics
2002, 21 (25), 5531−5539. (e) Spasyuk, D. M.; Gorelsky, S. I.; van
der Est, A.; Zargarian, D. Characterization of Divalent and Trivalent
Species Generated in the Chemical and Electrochemical Oxidation of
a Dimeric Pincer Complex of Nickel. Inorg. Chem. 2011, 50, 2661−
2674. (f) Groux, L. F.; Zargarian, D. Aminoalkyl-Substituted
Indenyl−Nickel Compounds: Tuning Reactivities as a Function of
the Pendant, Hemilabile Moiety. Organometallics 2003, 22 (15),
3124−3133.
(6) For examples of Ni complexes based on various symmetrical or
unsymmetrical pincer ligands see the following review and primary
reports. (a) Haenel, M. W.; Jakubik, D.; Kruger, C.; Betz, P. 1,8-
̈
Bis(diphenylphosphino)anthracene and Metal Complexes1). Chem.
́
Ber. 1991, 124 (2), 333−336. (b) Gomez-Benítez, V.; Baldovino-
́
́
Pantaleon, O.; Herrera-Alvarez, C.; Toscano, R. A.; Morales-Morales,
D. High yield thiolation of iodobenzene catalyzed by the phosphinite
nickel PCP pincer complex: [NiCl{C6H3−2,6-(OPPh2)2}]. Tetrahe-
dron Lett. 2006, 47 (29), 5059−5062. (c) Gutsulyak, D. V.; Piers, W.
E.; Borau-Garcia, J.; Parvez, M. Activation of Water, Ammonia, and
Other Small Molecules by PCcarbeneP Nickel Pincer Complexes. J.
Am. Chem. Soc. 2013, 135 (32), 11776−11779. (d) Jonasson, K. J.;
Wendt, O. F. Synthesis and Characterization of a Family of POCOP
Pincer Complexes with Nickel: Reactivity Towards CO2 and
Phenylacetylene. Chem. - Eur. J. 2014, 20 (37), 11894−11902.
(e) Jonasson, K. J.; Wendt, O. F. Synthesis and characterisation of
new PCsp3P-supported nickel complexes. J. Organomet. Chem. 2014,
759, 15−18. (f) Mousa, A. H.; Bendix, J.; Wendt, O. F. Synthesis,
Characterization, and Reactivity of PCN Pincer Nickel Complexes.
Organometallics 2018, 37 (15), 2581−2593. (g) Zargarian, D.;
Castonguay, A.; Spasyuk, D. M., ECE-Type Pincer Complexes of
Nickel. In Organometallic Pincer Chemistry; van Koten, G., Milstein,
D., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp
131−173. (h) Castonguay, A.; Beauchamp, A. L.; Zargarian, D. New
Derivatives of PCP-Type Pincer Complexes of Nickel. Inorg. Chem.
2009, 48 (7), 3177−3184. (i) Vabre, B.; Canac, Y.; Duhayon, C.;
(12) This complex has been shown to adopt a square -planar
structure in the solid state. See ref 9 for its preparation, isolation, and
solid-state characterization.
(13) It should be noted that EtOAc and THF mixtures showed the
same colors as the toluene mixtures; to simplify the discussion, we
have focused on toluene mixtures.
(14) The rates of these reactions were monitored by observing the
emergence of 31P signals characteristic of the cyclonickelated
complexes: a singlet at 196 ppm in acetonitrile for (κP,κC-i-
Pr2POC6H4)Ni(NCMe)Br and AB doublets at 184 and 151 ppm in
toluene for (κP,κC-i-Pr2POC6H4)Ni(i-Pr2POPh)Br. Complete con-
version was noted by the complete disappearance of the broad signals
due to the nonmetalated phosphinite adducts, whereas partial
conversions were estimated by integration of the signals for the
metalated and nonmetalated species.
(15) Since toluene samples of both the starting material trans-
L2NiBr2 and the cyclometalated product (κP,κC-i-Pr2POC6H4)Ni(i-
Pr2POPh)Br display sharp 31P signals, the extent of cyclometalation in
toluene mixtures could be determined in a straightforward manner on
M
Organometallics XXXX, XXX, XXX−XXX