3
than the other way around). The P–O betaine 6 could be formed
ACCEPTED MANUSCRIPT
directly by Michael-type addition to the carbonyl oxygen
(Scheme 5) or by “normal” betaine formation (Scheme 1)
followed by ring-closure to give the O,N-phosphorane 2 (R = Ph,
R' = Et or i-Pr) and then ring-opening at the P–N bond rather than
the P–O bond. Both radical species 7 and 8 are decomposed
immediately by carboxylic acids and do not appear to be
involved in normal Mitsunobu reactions.
References and notes
1. For a comprehensive review, see Swamy, K. C. K.; Kumar, N. N. B.;
Balaraman, E.; Kumar, K. V. P., Chem. Rev. 2009, 109, 2551-2651.
2. Morrison, D. C. J. Org. Chem. 1958, 23, 1072-1074.
3. Brunn, E.; Huisgen, R. Angew. Chem., Int. Ed. 1969, 8, 513-515.
4. Guthrie, R. D. G.; Jenkins, I. D. Aust. J. Chem. 1982, 35, 767-774.
5. Camp, D.; Hanson, G. R.; Jenkins, I. D. J. Org. Chem. 1995, 60, 2977-
2980.
6. Kumar, N. S.; Komana, P.; Vittal, J. J.; Swamy, K. C. K. J. Org.
Chem. 2002, 67, 6653-6658.
7. Kanzanian, T.; Mayr, H. Chem. Eur. J. 2010, 16, 11670-11677.
8. Crich, D.; Dyker, H.; Harris, R. J. J. Org. Chem. 1989, 54, 257-259.
9. Camp, D.; Campitelli, M.; Hanson, G. R.; Jenkins, I. D. J. Am. Chem.
Soc. 2012, 134, 16188-16196.
10. Eberson, L.; Persson, O.; Svensson, J. O. Acta. Chem. Scan. 1998, 52,
1293-1300.
11. Schenk, S.; Weston, J.; Anders, E. J. Am. Chem. Soc. 2005, 127,
12566-12576.
12. Arbuzov, B. A.; Polezhaeva, N. A.; Vinogradova, V. S. Izv. Akad.
Nauk SSSR, Ser. Khim. 1968, 2525-2529.
13. For examples, see: (a) Gonclaves, H.; Domroy, J. R.; Chapleur, Y.;
Castro, B.; Faudet, H.; Burgada, R. Phosphorus Sulfur 1980, 8, 147-
152. (b) Majoral, J. P.; Kraemer, R.; N'Gando M'Pondo, T.; Navech, J.
Tetrahedron Lett. 1980, 21, 1307-1310. (c) Navech, J.; Kraemer, R.;
Majoral, J. P. Tetrahedron Lett. 1980, 21, 1449-1452. (d) Hulst, R.;
van Basten, A.; Fitzpatrick, K.; Kellogg, R. M. J. Chem. Soc., Perkin
Trans. 1 1995, 2961-2963. (e) Li, Z.; Zhou, Z.; Wang, L.; Zhou, Q.;
Tang, C. Tetrahedron: Asymmetry 2002, 13, 145-148. (f) Kumar, K. V.
P. P.; Kumar, N. S.; Swamy, K. C. K. New J. Chem. 2006, 30, 717-
728.
Scheme 5. Formation of radicals in the Mitsunobu reaction
3. Conclusions
14. Smith, D. J. H. In Comprehensive Organic Chemistry; Barton, D. H.
R., Ollis, V. D., Eds.; Pergamon: Exeter, 1979; Vol. 2, pp 1233-1256.
15. Emsley, J. and Hall, D. “The Chemistry of Phosphorus”, Harper and
Row, London, 1976.
16. Ramirez, F. Bull. Soc. Chim. Fr. 1970, 3491-3519.
17. (a) Gorenstein, D. G.; Luxon, B. A.; Findlay, J. B.; Momii, R. J. Am.
Chem. Soc. 1977, 99, 4170-4172. (b) Swamy, K. C. K.; Pavan, M. P.;
Srinivas, V. Top. Heterocycl. Chem. 2009, 20, 99-145.
18. van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.;
Rutjes, F. P. J. T.; van Delft, F. L. Chem. Eur. J. 2011, 17, 11290 –
11295.
Evidence is provided that the first step in the Mitsunobu reaction,
the reaction of a phosphine with DIAD or DEAD, can produce
either an O,N-phosphorane or a betaine, depending on the
phosphine employed. This represents the first experimental
confirmation of previous DFT predictions. Evidence is also
provided for a rapid equilibrium between the O,N-phosphorane
and the corresponding betaine. Significantly, we now know that
the first step in the Mitsunobu reaction proceeds via a Michael-
type nucleophilic attack by the phosphine on the
azodicarboxylate, and not via a concerted pericyclic reaction or a
SET mechanism.
19. Hudson, R. F.; Brown, C. Acc. Chem. Res. 1972, 5, 204-211.
20. Alyea, E. C; Feruson, G.; Gallagher, J. F. Acta Cryst. (1992). C48,
959-961.
21. Nesmeyanov, N. A.; Rebrova, O. A.; Mikul'shina, V. V.; Petrovsky, P.
V.; Robas, V. I.; Reutov, O. A. J. Organometal. Chem. 1976, 110, 49-
57.
4. Experimental Section
Materials. Triphenylphosphine, diisopropyl azodicarboxylate,
and methyl iodide were commercial samples and used without
further purification. THF was dried and distilled prior to use. 9-
Phenyl-9-phosphafluorene (3) was synthesized according to the
procedure of Nesmeyanov et al.21
31P NMR competition experiments. Ph3P (94.4 mg, 0.36 mmol)
and 9-phenyl-9-phosphafluorene (93.6 mg, 0.36 mmol) were
dissolved in dry THF (3 mL) under nitrogen in a 10 mm NMR
tube. The solution was cooled to 0 °C and DIAD (18 ꢀL, 0.09
mmol) then added dropwise over 1 min to the swirled, cooled
solution. A cap was placed on the tube and sealed with Parafilm
before recording the 31P NMR spectrum at 10 °C on a 300 MHz
instrument within 5 min. The experiment was repeated using
methyl iodide in place of DIAD. All spectra were acquired at an
operating frequency of 121.47 MHz using a 45° flip angle, 3 s
recycle delay, and a 0.33 s acquisition time with gated
decoupling. Negative 31P chemical shifts are upfield of external
phosphoric acid (85%).
Acknowledgement.
We thank Griffith University for financial support.
* Corresponding author. Tel +61 7 3735 6025, Fax: + (07) 3735 6001, E-mail address: i.jenkins@griffith.edu.au