References
[
1] (a) S. Brase, C. Gil, K. Knepper, et al., Organic azides: an exploding diversity of a unique class of compounds, Angew. Chem., Int. Ed. 44 (2005) 5188-5240;
b) M. Minozzi, D. Nanni, P. Spagnolo, From azides to nitrogen-centered radicals: applications of azide radical chemistry to organic synthesis, Chem. Eur. J.
5 (2009) 7830-7840.
c) D. Lubriks, I. Sokolovs, E. Suna, Indirect C–H azidation of heterocycles via copper-catalyzed regioselective fragmentation of unsymmetrical λ -iodanes,
J. Am. Chem. Soc. 134 (2012) 15436-15442;
(
1
(
3
(
(
d) C. Tang, N. Jiao, Copper-catalyzed C–H azidation of anilines under mild conditions, J. Am. Chem. Soc. 134 (2012) 18924-18927;
e) Q.H. Deng, T. Bleith, H. Wadepohl, L.H. Gade, Enantioselective iron-catalyzed azidation of β-keto esters and oxindoles, J. Am. Chem. Soc. 135 (2013)
5
356-5359;
(
(
(
(
f) F. Xie, Z. Qi, X. Li, Rhodium(III)-catalyzed azidation and nitration of arenes by C–H activation, Angew. Chem. Int. Ed. 52 (2013) 11862-11866;
g) P. Klahn, H. Erhardt, A. Kotthaus, et al., The synthesis of -azidoesters and geminal triazides, Angew. Chem. Int. Ed. 53 (2014) 7913-7919;
h) H. Yin, T. Wang, N. Jiao, Copper-catalyzed oxoazidation and alkoxyazidation of indoles, Org. Lett. 16 (2014) 2302-2305;
i) Y. Fan, W. Wan, G. Ma, et al., Room-temperature Cu(II)-catalyzed aromatic C–H azidation for the synthesis of ortho-azido anilines with excellent
regioselectivity, Chem. Commun. 50 (2014) 5733-5736;
(
(
(
(
(
(
j) A. Sharma, J.F. Hartwig, Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization, Nature 517 (2015) 600-604;
k) X. Huang, T.M. Bergsten, J.T. Groves, Manganese-catalyzed late-stage aliphatic C–H azidation, J. Am. Chem. Soc. 137 (2015) 5300-5303;
l) X. Huang, J.T. Groves, Taming azide radicals for catalytic C–H azidation, ACS Catal. 6 (2016) 751-759.
m) W.E. Fristad, T.A. Brandvold, J.R. Peterson, et al., Conversion of alkenes to 1,2-diazides and 1,2-diamines, J. Org. Chem. 50 (1985) 3647-3649;
n) Y.A. Yuan, D.F. Lu, Y.R. Chen, et al., Iron-catalyzed direct diazidation for a broad range of olefins, Angew. Chem. Int. Ed. 55 (2016) 534-538.
o) B. Zhang, A. Studer, Stereoselective radical azidooxygenation of alkenes, Org. Lett. 15 (2013) 4548-4551;
(
p) L. Zhu, H. Yu, Z. Xu, et al., Copper-catalyzed oxyazidation of unactivated alkenes: a facile synthesis of isoxazolines featuring an azido substituent, Org.
Lett. 16 (2014) 1562-1565.
q) H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004-
021;
r) V.V. Rostovtsev, L.G. Green, V.V. Fokin, et al., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and
terminal alkynes, Angew. Chem. Int. Ed. 41 (2002) 2596-2599;
s) P. Wu, A.K. Feldman, A.K. Nugent, et al., Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of
(
2
(
(
azides and alkynes, Angew. Chem. Int. Ed. 43 (2004) 3928-3932.
[
2] (a) P. Thirumurugan, D. Matosiuk, K. Jozwiak, Click chemistry for drug development and diverse chemical-biology applications, Chem. Rev. 113 (2013)
4
905-4979;
(b) M. Grammel, H.C. Hang, Chemical reporters for biological discovery, Nat. Chem. Biol. 9 (2013) 475-484;
(
c) C.J. Hawker, V.V. Fokin, M.G. Finn, et al., Bringing efficiency to materials synthesis: the philosophy of click chemistry, Aust. J. Chem. 60 (2007) 381-
3
83.
(
(
(
d) C. Chu, R. Liu, Application of click chemistry on preparation of separation materials for liquid chromatography, Chem. Soc. Rev., 40 (2011) 2177-2188;
e) W.H. Binder, R. Sachsenhofer, ‘Click’ chemistry in polymer and materials science, Macromol. Rapid Commun. 28 (2007) 15-54;
f) C. Barner-Kowollik, F.E.D. Prez, P. Espeel, et al., “Clicking” polymers or just efficient linking: what is the difference? Angew. Chem. Int. Ed. 50 (2011)
6
0-62.
[
[
3] (a) J. Wang, P. Li, P.Y. Choy, et al., Advances and applications in organocatalytic asymmetric aza-Michael addition, ChemCatChem 4 (2012) 917-925;
(
(
(
b) D. Enders, C. Wang, J.X. Liebich, Organocatalytic asymmetric aza-Michael additions, Chem. Eur. J. 15 (2009) 11058-11076;
c) P.R. Krishna, A. Sreeshailam, R. Srinivas, Tetrahedron 65 (2009) 9657-9672;
d) L.W. Xu, C.G. Xia, A catalytic enantioselective aza-Michael reaction: novel protocols for asymmetric synthesis of -amino carbonyl compounds, Eur. J.
Org. Chem. (2005) 633-639.
4] (a) D.C. Cole, Recent stereoselective synthetic approaches to -amino acids, Tetrahedron 50 (1994) 9517-9582;
(
(
(
b) M. Liu, M.P. Sibi, Recent advances in the stereoselective synthesis of β-amino acids, Tetrahedron 58 (2002) 7991-8035;
c) J.A. Ma, Recent developments in the catalytic asymmetric synthesis of α- and β-amino acids, Angew. Chem. Int. Ed. 42 (2003) 4290-4299;
d) B. Weiner, W. Szymanski, D.B. Janssen, et al., Recent advances in the catalytic asymmetric synthesis of -amino acids, Chem. Soc. Rev. 39 (2010)
1
656-1691.
[
[
5] (a) H.X. Ding, K.K.C. Liu, S.M. Sakya, et al., Synthetic approaches to the 2011 new drugs, Bioorg. Med. Chem. 21 (2013) 2795-2825;
(
(
b) K.K.C. Liu, S.M. Sakya, C.J. O’Donnell, et al., Synthetic approaches to the 2009 new drugs, Bioorg. Med. Chem. 19 (2011) 1136-1154;
c) A. Kumar, I. Ahmad, B.S. Chhikara, et al., Synthesis of 3-phenylpyrazolopyrimidine-1,2,3-triazole conjugates and evaluation of their Src kinase
inhibitory and anticancer activities, Bioorg. Med. Chem. Lett. 21 (2011) 1342-1346.
6] (a) D.J. Guerin, T.E. Horstmann, S.J. Miller, Amine-catalyzed addition of azide ion to α,β-unsaturated carbonyl compounds, Org. Lett. 1 (1999) 1107-1109.
(
b) J.K. Myers, E.N. Jacobsen, Asymmetric synthesis of β-amino acid derivatives via catalytic conjugate addition of hydrazoic acid to unsaturated imides, J.
Am. Chem. Soc. 121 (1999) 8959-8960;
c) T.E. Horstmann, D.J. Guerin, S.J. Miller, Asymmetric conjugate addition of azide to α,β-unsaturated carbonyl compounds catalyzed by simple peptides,
Angew. Chem. Int. Ed. 39 (2000) 3635-3638;
d) D.J. Guerin, S.J. Miller, Asymmetric azidation-cycloaddition with open-chain peptide-based catalysts. A sequential enantioselective route to triazoles, J.
Am. Chem. Soc. 124 (2002) 2134-2136;
e) L.W. Xu, L. Li, C.G. Xia, et al., The first ionic liquids promoted conjugate addition of azide ion to α,β-unsaturated carbonyl compounds, Tetrahedron
Lett. 45 (2004) 1219-1221;
f) M.S. Taylor, D.N. Zalatan, A.M. Lerchner, et al., Highly enantioselective conjugate additions to α,β-unsaturated ketones catalyzed by a (Salen)Al
complex, J. Am. Chem. Soc. 127 (2005) 1313-1317;
g) M. Nielsen, W. Zhuang, K.A. Jørgensen, Asymmetric conjugate addition of azide to α,β-unsaturated nitro compounds catalyzed by cinchona alkaloids,
Tetrahedron 63 (2007) 5849-5854;
h) T. Bellavista, S. Meninno, A. Lattanzi, et al., Asymmetric hydroazidation of nitroalkenes promoted by a secondary amine-thiourea catalyst, Adv. Synth.
Catal. 357 (2015) 3365-3373;
(
(
(
(
(
(
(
(
(
i) Z. Liu, J. Liu, L. Zhang, P. et al., Silver(I)-catalyzed hydroazidation of ethynyl carbinols: synthesis of 2-azidoallyl alcohols, Angew. Chem. Int. Ed. 53
2014) 5305-5309;
j) X. Sun, X. Li, S. Song, et al., Mn-catalyzed highly efficient aerobic oxidative hydroxyazidation of olefins: a direct approach to β-azido alcohols, J. Am.
Chem. Soc. 137 (2015) 6059-6060.
[
[
7] P.K. Shyam, H.Y. Jang, Metal-organocatalytic tandem azide addition/oxyamination of aldehydes for the enantioselective synthesis of β-amino α-hydroxy
esters, Eur. J. Org. Chem. 2014, 1817-1822.
8] (a) L. Zhang, S. Luo, Bio-inspired chiral primary amine catalysis, Synlett 23 (2012) 1575-1589;