ACS Catalysis
Page 8 of 10
Reductions of Polysubstituted Tetrahydropyrans. J. Org. Chem. 2013,
78, 6075–6103.
34) Godin, F.; Prévost, M.; Gorelsky, S. I.; Mochirian, P.;
Nguyen, M.; Viens, F.; Guindon, Y. Diastereoselective Hydrogen-
Transfer Reactions: An Experimental and DFT Study. Chem. Eu. J.
(52) Matilla, M. A.; Stöckmann, H.; Leeper, F. J.; Salmond, G.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
P. C. Biogenesis of the Broad Spectrum Antifungal and Antioomycete
Compound, Oocydin A. J. Biol. Chem. 2012, 287, 39125–39138.
(53) Sudek, S.; Lopanik, N. B.; Waggoner, L. E.; Hildebrand, M.;
Anderson, C.; Liu, H.; Patel, A.; Sherman, D. H.; Haygood, M. G.
Identification of the Putative Bryostatin Polyketide Synthase Gene
Cluster from “Candidatus Endobugula Sertula”, the Uncultivated
Microbial Symbiont of the Marine Bryozoan Bugula Neritina. J. Nat.
Prod. 2007, 70, 67–74.
(
2
013, 19, 9308–9318.
(35) Wang, L.; Parnell, A.; Williams, C.; Bakar, N. A.; Challand,
M. R.; Kamp, M. W. van der; Simpson, T. J.; Race, P. R.; Crump, M.
P.; Willis, C. L. A Rieske Oxygenase/Epoxide Hydrolase-Catalysed
Reaction Cascade Creates Oxygen Heterocycles in Mupirocin
Biosynthesis. Nat. Catal. 2018, 1, 968.
(36) Meng, S.; Tang, G.-L.; Pan, H.-X. Enzymatic Formation of
Oxygen-Containing Heterocycles in Natural Product Biosynthesis.
ChemBioChem 2018, 19, 2002–2022.
(54) Walther, E.; Boldt, S.; Kage, H.; Lauterbach, T.; Martin, K.;
Roth, M.; Hertweck, C.; Sauerbrei, A.; Schmidtke, M.; Nett, M.
Zincophorin – Biosynthesis in Streptomyces Griseus and Antibiotic
Properties.
GMS
Infect
Dis
2016,
4,
Doc08.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
https://doi.org/10.3205/id000026.
(37) Werneburg, M.; Busch, B.; He, J.; Richter, M. E. A.; Xiang,
(55) Wagner, D. T.; Zhang, Z.; Meoded, R. A.; Cepeda, A. J.;
Piel, J.; Keatinge-Clay, A. T. Structural and Functional Studies of a
Pyran Synthase Domain from a Trans-Acyltransferase Assembly Line.
ACS Chem. Biol. 2018, 13, 975–983.
(56) Li, Y.; Dodge, G. J.; Fiers, W. D.; Fecik, R. A.; Smith, J. L.;
Aldrich, C. C. Functional Characterization of a Dehydratase Domain
from the Pikromycin Polyketide Synthase. J. Am. Chem. Soc. 2015,
137, 7003–7006.
(57) Fiers, W. D.; Dodge, G. J.; Sherman, D. H.; Smith, J. L.;
Aldrich, C. C. Vinylogous Dehydration by a Polyketide Dehydratase
Domain in Curacin Biosynthesis. J. Am. Chem. Soc. 2016, 138, 16024–
16036.
(58) Bali, S.; O’Hare, H. M.; Weissman, K. J. Broad Substrate
Specificity of Ketoreductases Derived from Modular Polyketide
Synthases. ChemBioChem 2006, 7, 478–484.
(59) Bali, S.; Weissman, K. J. Ketoreduction in Mycolactone
Biosynthesis: Insight into Substrate Specificity and Stereocontrol from
Studies of Discrete Ketoreductase Domains in Vitro. ChemBioChem
2006, 7, 1935–1942.
(60) F. Huerta, F.; E. Minidis, A. B.; Bäckvall, J.-E.
Racemisation in Asymmetric Synthesis. Dynamic Kinetic Resolution
and Related Processes in Enzyme and Metal Catalysis. Chem. Soc. Rev.
2001, 30, 321–331.
L.; Moore, B. S.; Roth, M.; Dahse, H.-M.; Hertweck, C. Exploiting
Enzymatic Promiscuity to Engineer a Focused Library of Highly
Selective Antifungal and Antiproliferative Aureothin Analogues. J.
Am. Chem. Soc. 2010, 132, 10407–10413.
(38) Henrot, M.; Richter, M. E. A.; Maddaluno, J.; Hertweck, C.;
DeꢀPaolis, M. Convergent Asymmetric Synthesis of (+)-Aureothin
Employing an Oxygenase-Mediated Resolution Step. Angew. Chem.
Int. Ed. 2012, 51, 9587–9591.
(
39) He, J.; Müller, M.; Hertweck, C. Formation of the Aureothin
Tetrahydrofuran Ring by Bifunctional Cytochrome P450
Monooxygenase. J. Am. Chem. Soc. 2004, 126, 16742–16743.
40) Bretschneider, T.; Heim, J. B.; Heine, D.; Winkler, R.;
a
(
Busch, B.; Kusebauch, B.; Stehle, T.; Zocher, G.; Hertweck, C.
Vinylogous Chain Branching Catalysed by a Dedicated Polyketide
Synthase Module. Nature 2013, 502, 124–128.
(41) Sundaram, S.; Kim, H. J.; Bauer, R.; Thongkongkaew, T.;
Heine, D.; Hertweck, C. On-Line Polyketide Cyclization into Diverse
Medium-Sized Lactones by a Specialized Ketosynthase Domain.
Angew. Chem. Int. Ed. 2018, 57, 11223–11227.
(
42) Heine, D.; Sundaram, S.; Bretschneider, T.; Hertweck, C.
Twofold Polyketide Branching by Stereoselective Enzymatic
Michael Addition. Chem. Commun. 2015, 51, 9872–9875.
43) Heine, D.; Bretschneider, T.; Sundaram, S.; Hertweck, C.
a
(
(61) Turner, N. J. Deracemisation Methods. Curr. Opin. Chem.
Biol. 2010, 14, 115–121.
Enzymatic Polyketide Chain Branching To Give Substituted Lactone,
Lactam, and Glutarimide Heterocycles. Angew. Chem. Int. Ed. 2014,
(62) Voss, C. V.; Gruber, C. C.; Faber, K.; Knaus, T.;
Macheroux, P.; Kroutil, W. Orchestration of Concurrent Oxidation and
Reduction Cycles for Stereoinversion and Deracemisation of Sec-
Alcohols. J. Am. Chem. Soc. 2008, 130, 13969–13972.
(63) Voss, C. V.; Gruber, C. C.; Kroutil, W. Deracemization of
Secondary Alcohols through a Concurrent Tandem Biocatalytic
Oxidation and Reduction. Angew. Chem. Int. Ed. 2008, 47, 741–745.
(64) Haak, R. M.; Berthiol, F.; Jerphagnon, T.; Gayet, A. J. A.;
Tarabiono, C.; Postema, C. P.; Ritleng, V.; Pfeffer, M.; Janssen, D. B.;
Minnaard, A. J.; Feringa, B. L.; de Vries, J. Dynamic Kinetic
Resolution of Racemic β-Haloalcohols: Direct Access to
Enantioenriched Epoxides. J. Am. Chem. Soc. 2008, 130, 13508–
13509.
(65) Mutti, F. G.; Orthaber, A.; Schrittwieser, J. H.; Vries, J. G.
de; Pietschnig, R.; Kroutil, W. Simultaneous Iridium Catalysed
Oxidation and Enzymatic Reduction Employing Orthogonal Reagents.
Chem. Commun. 2010, 46, 8046–8048.
(66) Pellissier, H. Recent Developments in Dynamic Kinetic
Resolution. Tetrahedron 2011, 67, 3769–3802.
(67) Hoyos, P.; Pace, V.; Alcántara, A. R. Dynamic Kinetic
Resolution via Hydrolase-Metal Combo Catalysis in Stereoselective
Synthesis of Bioactive Compounds. Adv. Synth. Catal. 2012, 354,
2585–2611.
(68) Martín-Matute, B.; Edin, M.; Bogár, K.; Bäckvall, J.-E.
Highly Compatible Metal and Enzyme Catalysts for Efficient Dynamic
Kinetic Resolution of Alcohols at Ambient Temperature. Angew.
Chem. Int. Ed. 2004, 43, 6535–6539.
5
3, 11645–11649.
44) Berkhan, G.; Hahn, F. A Dehydratase Domain in Ambruticin
Biosynthesis Displays Additional Activity as Pyran-Forming
(
a
Cyclase. Angew. Chem. Int. Ed. 2014, 53, 14240–14244.
(45) Sung, K. H.; Berkhan, G.; Hollmann, T.; Wagner, L.;
Blankenfeldt, W.; Hahn, F. Insights into the Dual Activity of a
Bifunctional Dehydratase-Cyclase Domain. Angew. Chem. Int. Ed.
2
018, 57, 343–347.
46) Pöplau, P.; Frank, S.; Morinaka, B. I.; Piel, J. An Enzymatic
(
Domain for the Formation of Cyclic Ethers in Complex Polyketides.
Angew. Chem. Int. Ed. 2013, 52, 13215–13218.
(47) Luhavaya, H.; Dias, M. V. B.; Williams, S. R.; Hong, H.; deꢀ
Oliveira, L. G.; Leadlay, P. F. Enzymology of Pyran RingꢀA Formation
in Salinomycin Biosynthesis. Angew. Chem. Int. Ed. 2015, 54, 13622–
13625.
(48) Irschik, H.; Kopp, M.; Weissman, K. J.; Buntin, K.; Piel, J.;
Müller, R. Analysis of the Sorangicin Gene Cluster Reinforces the
Utility of a Combined Phylogenetic/Retrobiosynthetic Analysis for
Deciphering Natural Product Assembly by Trans-AT PKS.
ChemBioChem 2010, 11, 1840–1849.
(49) Li, C.; Roege, K. E.; Kelly, W. L. Analysis of the
Indanomycin Biosynthetic Gene Cluster from Streptomyces
Antibioticus NRRL 8167. ChemBioChem 2009, 10, 1064–1072.
(50) Woo, A. J.; Strohl, W. R.; Priestley, N. D. Nonactin
Biosynthesis: The Product of NonS Catalyzes the Formation of the
Furan Ring of Nonactic Acid. Antimicrob. Agents Chemother. 1999,
4
3, 1662–1668.
51) Rebets, Y.; Brötz, E.; Manderscheid, N.; Tokovenko, B.;
(69) Rulli, G.; Heidlindemann, M.; Berkessel, A.; Hummel, W.;
Gröger, H. Towards Catalyst Compartimentation in Combined Chemo-
(
Myronovskyi, M.; Metz, P.; Petzke, L.; Luzhetskyy, A. Insights into
the Pamamycin Biosynthesis. Angew. Chem. Int. Ed. 2015, 54, 2280–
2284.
and
Biocatalytic
Processes:
Immobilization
of
Alcohol
Dehydrogenases for the Diastereoselective Reduction of a β-Hydroxy
ACS Paragon Plus Environment