2
24 Vizer et al.
TABLE 4 13C NMR (Monoresonance) Data for Pyrroles 7 12, δ (ppm) and J (Hz)
7
8
11.4 (q, J = 129, Pyr-CH ), 11.8 (q, J = 128, Pyr-CH ), 28.2 (q, J = 125, C(O)CH ); 46.3 (t, J = 138, N CH -Ph),
3
3
3
2
1
08.1 (d, J = 170, Pyr-CH), 119.9 (s, Pyr-C C(O)), 127.5 (s, Pyr-C CH ); 134.8 (s, Pyr-C CH ), 125.2 (d,
3
3
J = 156, Ph), 127.1 (d, J = 161, Ph), 128.6 (d, J = 160, Ph); 136.4 (s, Ph), 194.8 (s, C O)
11.6 (q, J = 129, Pyr-CH ), 12.1 (q, J = 127, Pyr-CH ), 28.3 (q, J = 127, C(O)CH ); 42.2 (t, J = 138,
3
3
3
N CH CH O), 66.1 (t, J = 139, N CH CH O), 87.0 (t, J = 159, OCH CH ); 108.1 (d, J = 170,
2
2
2
2
2
Pyr-C H), 119.9 (s, Pyr-C C(O)), 127.5 (s, Pyr-C CH ), 134.7 (s, Pyr-C CH ); 150.8 (d, J = 183,
3
3
OCH CH ), 195.7 (s, C O)
2
9
11.8 (q, J = 129, Pyr-CH ), 12.1 (q, J = 127, Pyr-CH ), 28.5 (q, J = 127, C(O)CH ); 36.3 (t, J = 125,
3
3
3
N CH CH -Ar), 45.1 (t, J = 142, N CH CH -Ar); 55.8 (qd, q, J = 144, d, J = 10, 2OCH ), 108.1 (d,
2
2
2
2
3
J = 170, Pyr-CH), 119.9 (s, Pyr-C C(O)); 127.4 (s, Pyr-C CH ), 130.2 (s, Pyr-C CH ), 11.3 (d, J = 154,
3
3
Ar-CH), 112.0 (d, J = 154, Ar-CH); 120.8 (d, J = 154, Ar-CH), 134.6 (s, Ar-C C ), 148.0 (s, Ar-C O), 149.0 (s,
Ar-C O), 194.9 (s, C O)
1
1
1
0a
10.9 (q, J = 105, Pyr-CH ), 11.7 (q, J = 106, Pyr-CH ), 14.2 (q, J = 107, OCH CH ); 46.4 (t, J = 103, OCH Ph),
3
3
2
3
2
5
1
1
8.8 (t, J = 115, OCH CH ), 107.4 (d, J = 121, Pyr-C H); 110.8 (s, Pyr-C C(O)), 125.2 (d, J = 104, 2C-Ph),
2
3
27.0 (d, J = 103, Ph), 127.9 (s, Pyr-C CH ); 128.5 (d, J = 104, 2C-Ph), 135.1 (s, Pyr-C CH ), 136.7 (s, Ph),
3
3
65.3 (brs, O C O)
1
11.4 (q, J = 129, Pyr-CH ), 12.3 (q, J = 127, Pyr-CH ), 14.5 (q, J = 126, OCH CH ); 42.6 (t, J = 137,
3
3
2
3
N CH CH O), 59.1 (t, J = 147, OCH CH ), 66.5 (t, J = 141, N CH CH O); 87.2 (t, J = 157, OCH CH ),
2
2
2
3
2
2
2
1
07.7 (d, J = 173, Pyr-CH), 111.1 (s, Pyr-C(O)), 127.8 (s, Pyr-C CH ); 135.4 (s, Pyr-C CH ), 151.2 (d,
3
3
J = 183, OCH CH ), 165.6 (s, O C O)
2
2
14.0 (q, J = 129, Pyr-CH ), 14.1 (q, J = 127, Pyr-CH ), 16.7 (q, J = 134, OCH CH ); 36.8 (t, J = 125,
3
3
2
3
N CH CH -Ar), 44.9 (t, J = 142, N CH CH -Ar); 55.6 (qd, q, J = 144, d, J = 10, 2OCH ), 58.5 (t, J = 147,
2
2
2
2
3
OCH CH ), 110.4 (d, J = 172, Pyr-CH); 112.5 (d, J = 154, Ar), 119.5 (s, Pyr-C C(O)), 121.2 (d, J = 154, Ar),
2
3
1
30.7 (s, Pyr-C CH ); 131.2 (s, Pyr-C CH ), 134.7 (s, Ar), 147.6 (s, Ar), 148.8 (s, Ar), 161.7 (s, O C O)
3 3
aSpectrum was recorded under partial quench of the resonance with protons.
benzene or methylene chloride (10–20 mL) was re-
fluxed 1–6 h till a full conversion of 3 or 4 was gained
according the thin-layer chromatography data. Then
a reaction mixture was cooled to room temperature,
and acetic acid was added up to a neutral reaction.
The molecular sieves were filtered off and the solu-
tion was concentrated. The pyrroles 7–12 were pu-
rified by column chromatography on silica gel with
an elution by benzene and then by benzene–acetone
in different ratios (20:1, 10:1, 5:1, 2:1, 1:1).
Prog Heterocycl Chem 1998, 10, 109–128; (d) Ketcha,
D. M. Prog Heterocycl Chem 2001, 13, 111–129; (e)
Abele, E.; Abele, R.; Lukevics, E. Chem Heterocycl
Comp (Riga-NY) 2004, 40, 1–15; (f) Takahata, H. J.
Pharm Soc Jpn 1992, 112, 229–43; (g) Gale, P. A.,
Anzenbacher, P., Jr., Sessler, J. L. Coord Chem Rev
2001, 222, 57–102; (h) Le Quesne, P. W.; Dong, Y.;
Blythe, T. A. Alkaloids: Chem Biol Perspect 1999, 13,
2
37–287.
2] (a) Fuerstner, A. Angew Chem, Int Ed 2003, 42, 3582–
603; (b) Sessler, J. L.; Eller, L. R.; Cho, W.-S.; Nico-
[
3
laou, S.; Aguilar, A.; Lee, J. T.; Lynch, V. M.; Magda,
D. J. Angew Chem, Int Ed 2005, 44, 5989–5992;
(
c) Nakajima, T.; Kato, Y.; Takeshita, S.; Matsuda,
Synthesis from Enolphosphates. A mixture of 5
or 6 (0.0012 mol), fresh distilled primary amine
(
toluenesulfonic acid (0.01 g) in 15 mL benzene was
refluxed 1–3 h till a full conversion of an amine
was gained according the thin-layer chromatography
data. Then the reaction mixture was cooled to room
temperature. The molecular sieves were filtered off
and the solution was concentrated. The pyrroles
N.; Kodama, Y.; Watanabe, M. Jpn Kokai Tokkyo
Koho 2005, 8 pp. Japanese Patent 2005261309
A2 20050929; (d) Montaner, B.; Castillo-Avila, W.;
Martinell, M.; Oellinger, R.; Aymami, J.; Giralt, E.;
Perez-Tomas, R. Toxicol Sci 2005, 85, 870–879; (e)
Zhang, J.; Shen, Y.; Liu, J.; Wei, D. Biochem Pharm
˚
0.001 mol), the 4 A molecular sieves (3 g), and p-
2
005, 69, 407–414.
[
3] (a) Padron, J. M.; Tejedor, D.; Santos-Exposito, A.;
Garcia-Tellado, F.; Martin, V. S.; Villar, J. Bioorg
Med Chem Lett 2005, 15, 2487–2490; (b) Wang,
G. T.; Chen, Y.; Wang, S.; Gentles, R.; Sowin, T.;
Kati, W.; Muchmore, S.; Giranda, V.; Stewart, K.;
Sham, H.; Kempf, D.; Laver, W. G. J Med Chem 2001,
7
–12 were purified by column chromatography on
silica gel with an elution by benzene and then by
benzene–acetone in different ratios (20:1, 10:1, 5:1,
4
4, 1192–1201; (c) Bullington, J. L.; Cameron, J. C.;
2:1, 1:1).
Heintzelman, G. R.; Cavender, D. E.; Wadsworth, S.
A.; Olini, G. C.; Fahmy, B.; Dodd, J. H.; Siekierka, J.
J. In Book of Abstracts, 218th ACS National Meeting,
New Orleans, 22–26 August 1999.
REFERENCES
[
4] Mansour, T. S.; Sauve, G. Heterocycles 1988, 27,
[
1] (a) Bailly, C. Curr Med Chem Anti-Cancer Agents
004, 4, 363–378; (b) Janosik, T.; Bergman, J. Prog
Heterocycl Chem 2003, 15, 140–166; (c) Ketcha, D. M.
315–18.
2
[5] Brandsma, L.; Nedolya, N. A.; Trofimov, B. A. Eur J
Org Chem 1999, 10, 2663–2664.
Heteroatom Chemistry DOI 10.1002/hc